
DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Design and Implementation of a
Conversational Health Question Answering

System

Jonas Lossin

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Design and Implementation of a
Conversational Health Question Answering

System

Entwurf und Implementierung eines
konversationsfähigen Systems zur

Beantwortung von Gesundheitsfragen

Author: Jonas Lossin
Supervisor: Prof. Dr. Florian Matthes
Advisor: M.Sc. Phillip Schneider
Submission Date: 15.02.2024

I confirm that this bachelor’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.02.2024 Jonas Lossin

Acknowledgments

I would like to express my gratitude to those who have contributed to the completion of
this thesis. First, a special thank you to M.Sc. Phillip Schneider, the advisor of my thesis.
Not only did he provide valuable guidance along the way but also offered constructive
feedback when I faced challenges or uncertainties.

Furthermore, I would like to thank my supervisor, Prof. Dr. Florian Matthes, for giving
me the opportunity to conduct my thesis under the Chair of Software Engineering for
Business Information Systems and contributing to current research.

Abstract

Conversational agents offer a more accessible method of retrieving information than
traditional search engines. In contrast to these more impersonal tools, such as Google
or Wikipedia, conversational agents offer a conversation-like interaction which enhances
the user experience by asking follow-up questions and creating a sense of dialogue. This
interactive approach is particularly valuable in healthcare, where users often include older
adults less familiar with technology and individuals facing loneliness.

This thesis presents the development of a voice-based conversational agent that answers
consumer health questions. At its core, this agent uses a similarity-based approach,
employing a dataset of question-answer pairs as its knowledge base. As such medical
question-answering datasets barely exist in the literature, this work addresses the gap by
developing a high-quality dataset. For this purpose, a pipeline consisting of several steps
is created, which automatically generates question-answer pairs with the help of a large
language model.

Moreover, the agent contains a recommendation system, suggesting new questions to
the user and therefore enhancing the conversation-like feeling. The efficacy as well as
the user experience offered by the agent were assessed with two different strategies. The
results of the evaluation confirm that the presented approach improves accessibility of
health information and maintains a pleasant conversational experience.

Keywords: Conversational agent, question answering, consumer health questions,
natural language processing, large language model, question-answer dataset

iv

Kurzfassung

Gesprächsagenten bieten eine zugänglichere Methode zum Abrufen von Informationen als
herkömmliche Suchmaschinen. Im Gegensatz zu diesen eher unpersönlichen Anwendungen
wie Google oder Wikipedia bieten Conversational Agents eine konversationsähnliche Inter-
aktion, die das Nutzererlebnis durch Folgefragen und die Vermittlung eines Dialoggefühls
verbessert. Dieser interaktive Ansatz ist besonders wertvoll im Pflegebereich, wo zu den
Nutzern häufig ältere Menschen gehören, die mit Technologie weniger vertraut sind und
mit Einsamkeit zu kämpfen haben.

In dieser Arbeit wird die Entwicklung eines sprachbasierten Gesprächsagenten vorge-
stellt, der Gesundheitsfragen von Verbrauchern beantwortet. Im Kern verwendet dieser
Agent einen ähnlichkeitsbasierten Ansatz, der einen Datensatz von Frage-Antwort-Paaren
als Wissensbasis nutzt. Da solche Datensätze zur Beantwortung medizinischer Fragen
in der Literatur kaum existieren, schließt diese Arbeit die Forschungslücke durch die
Entwicklung eines hochwertigen Datensatzes. Dazu wird unter anderem eines großen
Sprachmodells zur automatichen Generierung von Frage-Antwort-Paaren verwendet.

Darüber hinaus enthält der Agent ein Empfehlungssystem, das dem Nutzer neue Fragen
vorschlägt und so das Gesprächsgefühl verstärkt. Die Wirksamkeit und das Benutzererleb-
nis des Agenten wurden mit zwei verschiedenen Strategien bewertet, wobei sich bestätigte,
dass der vorgestellte Ansatz die Zugänglichkeit von Gesundheitsinformationen verbessert
und ein angenehmes Gesprächserlebnis bietet.

Schlüsselwörter: Gesprächsagent, Beantwortung von Fragen, Gesundheitsfragen von
Verbrauchern, Natural Language Processing, großes Sprachmodell, Frage-Antwort Daten-
satz

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1. Introduction 1
1.1. Motivation . 1
1.2. Research . 2
1.3. Thesis Outline . 3

2. Foundations and Theoretical Background 4
2.1. Conversational Agents . 4

2.1.1. Fundamentals and Definitions . 4
2.1.2. Development of a Conversational Agent 6
2.1.3. Conversational Agents in Healthcare . 7

2.2. Pre-Trained Language Models . 8
2.2.1. Auto-Encoding Transformers . 9
2.2.2. Auto-Regressive Transformers . 9

2.3. Question-Answering . 10
2.3.1. Similarity Search . 10
2.3.2. Information Retrieval . 12
2.3.3. Similarity Search vs Information Retrieval 14

3. Related Work 15
3.1. Conversational Agents in Consumer Health Domain 15

3.1.1. Existing Question-Answering Approaches 15
3.1.2. Evaluation . 16

3.2. Generation of Question-Answering Pairs . 17
3.3. Novelty of Our Approach . 18

4. Methods 19
4.1. Literature Review . 19
4.2. Generation of Question-Answering Pairs . 21
4.3. Development of a Conversational Agent . 22
4.4. Evaluation . 22

vi

Contents

5. Results 23
5.1. RQ1: Literature Review . 23

5.1.1. Generation of Question-Answering Pairs 23
5.1.2. Existing Conversational Agents for Answering Consumer Health Questions 24

5.2. RQ2: Construction of Question-Answering Dataset 27
5.2.1. Extraction of Data . 27
5.2.2. Generation of Question-Answering Pairs 28
5.2.3. Further Processing . 32
5.2.4. Validation . 34

5.3. RQ3: Development of a Conversational Agent 36
5.3.1. Architecture of a Conversational Agent 36
5.3.2. Question Analysis Component . 38
5.3.3. Recommendation Component . 41
5.3.4. Dialogflow . 44

5.4. RQ4: Evaluation of CA . 46
5.4.1. Automatic Evaluation . 46
5.4.2. Test User Evaluation . 52

6. Discussion 56
6.1. Key Findings . 56
6.2. Challenges . 57

7. Conclusion 60
7.1. Summary . 60
7.2. Future Work . 61

A. Appendix 62

List of Figures 64

List of Tables 65

Acronyms 66

Bibliography 67

vii

1. Introduction

1.1. Motivation

In today’s age there is a vast amount of data available through the internet. Even though
technically everyone can access the data, not everyone is consulting the internet to answer
their questions. This might be due to the challenge of finding the appropriate information
when using a search engine to answer a question. Although there is most likely an answer
to one’s question, it remains a challenge to find that piece of information. Often it requires
reading through many articles to find a satisfying answer. Additionally, some people are
less familiar with technology and therefore do not even attempt to enquire any search
engine.

Conversational question-answering (QA) systems, also referred to as conversational
agent (CA), try to overcome this challenge by providing answers in natural language. These
systems can be categorized into two different types which are designed for different ques-
tions: Firstly, there are open-domain systems which are meant for questions from a wide
range of domains. Secondly, there are restricted-domain systems which are specialized on
one domain and aim to give more detailed answers [1].

In the scope of this thesis, we investigate approaches on restricted domain CAs, which
focus on answering consumer health questions (CHQs). Although this limits the number
of domains to only the medical domain, creating an effective system is still a significant
challenge [2]. Besides the lack of high-quality datasets for QA in the consumer health
domain, this is due to the gap between consumer language and medical jargon. Therefore,
this thesis aims to provide more insights on how to implement and evaluate a CA that can
effectively answer CHQs.

The development of this thesis is in cooperation with an ongoing research project, called
ALPHA-KI1. The ALPHA-KI project focuses on the design of ALPHA, a smartwatch mainly
used by patients in healthcare that only consists of a voice-based interface. The agent
created in the scope of this thesis will be deployed as a new feature on ALPHA, designed
to educate patients on health topics.

Since the smartwatch is being used in healthcare, the user group consists of mainly
elderly people which are less familiar with technology. This group of users would also

1ALPHA-KI: https://wwwmatthes.in.tum.de/pages/uysghltybqze/AI-Based-Digital-Health-
Assistant-ALPHA-KI

1

https://wwwmatthes.in.tum.de/pages/uysghltybqze/AI-Based-Digital-Health-Assistant-ALPHA-KI
https://wwwmatthes.in.tum.de/pages/uysghltybqze/AI-Based-Digital-Health-Assistant-ALPHA-KI

1. Introduction

rarely consult any search engines when having health-related questions. Thus, the agent
presented aims to improve the accessibility to health-related information especially for
elder people.

Additionally, the smartwatch is designed for German speaking users and therefore the
agent discussed throughout this thesis will also operate in German.

The agent mainly builds on a similarity-based approach to answer CHQs. When a user
asks a question, the system searches through numerous stored questions to find the closest
match. Each question is linked to a valid answer, which is then used to respond to the user.
Compared to systems that heavily rely on documents written in professional language,
the questions in our approach are written in everyday language which bridges the gap
between medical jargon and consumer language. Thus, we aim to explore the use of such a
similarity-based system to answer CHQs.

In order to achieve satisfying results with a similarity-based approach, a significant
amount of QA pairs is required: The more unique questions we have stored, the more
likely our agent can match an incoming question. Therefore, in this bachelor’s thesis, we
explore how to construct a dataset of QA pairs by presenting an automated pipeline and
discussing the results. This contributes to the existing lack of high quality medical QA
datasets available in literature [3].

1.2. Research

Based on the described motivation, we defined four research questions building the
guideline of this thesis:

RQ1: Which existing approaches are there in building conversational question answering
agents in the context of health-related topics?

The first question aims to give an overview of existing solutions in conversational QA,
specifically in the medical domain. It covers two main areas: existing approaches for the
automatic creation of QA pairs using large language models (LLMs) and the development
of a CA which answers CHQs. These two areas represent the main pillars of this thesis.

RQ2: How to construct a dataset with question-answer pairs?

The second question addresses the first pillar of this thesis which is the automatic
generation of QA pairs. To answer this question, we will explore how we can collect
appropriate data, how to instruct an LLM to generate high quality QA pairs and how to
prepare this dataset for further use by a conversational agent.

RQ3: How to develop a pipeline for conversational question answering using the scraped
dataset?

2

1. Introduction

Question three then focuses on the second pillar of this thesis which is the development
of a CA. This question relies on the results from RQ2, considering that our agent will
perform better the more unique questions we have generated in the previous step. In
the scope of RQ3, we then explain the architecture of our agent, containing a pipeline of
multiple steps in order to answer an incoming question.

RQ4: Which evaluation methods can be used to assess the performance and effectiveness
of the developed system?

The final question aims to provide suitable evaluation methods for a CA. This is achieved
by presenting an automatic evaluation approach as well as analyzing feedback given by a
group of test users. Moreover, we discuss the results from both evaluation strategies.

1.3. Thesis Outline

The structure of this thesis is as follows: The motivation, research topics, and thesis
structure are introduced in Chapter 1. Chapter 2 explains the foundations and theoretical
background on the topics handled by this thesis. In Chapter 3, relevant research on
automatic QA pair generation and CAs for CHQs is reviewed. The methods used to answer
each research question are described in Chapter 4. The process for creating our QA
pairs, the architecture of our CA and the details and results for the evaluation are then
presented in Chapter 5. Chapter 6 discusses the previously presented results as well as
any limitations of our agent. Chapter 7 finally provides a conclusion of this thesis and
suggests directions for future work.

3

2. Foundations and Theoretical
Background

This chapter lays the foundation to understand the subsequent chapters. First, it clarifies
different terms related to conversational agents, discusses popular development platforms
for CAs and addresses the challenges of creating an agent for consumers in the health
context. Secondly, we present in-depth background information on two question-answering
approaches that are used by the final agent.

2.1. Conversational Agents

2.1.1. Fundamentals and Definitions

Before diving into the workings of a CA, we will introduce some important definitions to
avoid any ambiguity. We are following the definitions provided by Allouch et al. [4], who
begin with an introduction into the most general concept of a dialogue system. It describes
a system which uses natural language to communicate between human and machine. A
conversational agent is a dialogue system which can generate and understand natural
language responses using any medium, e.g. text or voice input as well as output. For
instance, a telephone hotline, where you are instructed to say "one" if you want to talk to
an English-speaking assistant or "two" if you want to talk to a German-speaking assistant,
represents a basic dialogue system. This cannot be considered a CA because the user
is not responding in natural language. CAs are further categorized into text-based and
voice-based agents. The former is interacting with the user through a chat while the latter
uses voice for in- and output. Some agents may use a combination of both, e.g. voice-based
input but output through text, although Allouch et al. do not specify this as a subclass
of dialogue systems. However, they also define embodied agents as another category of
CAs which use gestures in addition to text- or voice-based communication. As this is not
of relevance to this thesis, we do not go into detail here. All definitions are summarized
in Figure 2.1, allowing us to classify the agent developed in the scope of this thesis as a
voice-based conversational agent.

After clarifying the most important terms, we can now outline the general architecture of
a CA and the additional components needed to make a CA become a voice-based agent. At
the core all CAs work in the same ways: They consist of a natural language understanding
(NLU) component, a dialogue manager (DM) and a natural language generator (NLG) com-
ponent [4]. The NLU component interprets the user input and converts it into a semantic

4

2. Foundations and Theoretical Background

Figure 2.1.: Hierarchy of different definitions related to conversational agents, based on [4]

representation which can be further processed by the DM [5]. The DM decides how to
respond to the processed user input by identifying the user’s motivation. A widespread
concept for this process is the use of so-called intents. One agent usually has multiple
intents which help the agent to map different scenarios to specific actions. This is achieved
through identification of specific keywords previously extracted by the NLU component.
The DM recognizes those keywords and matches them with one of its intents [6].

For instance, consider a conversational agent designed to perform the two actions of
informing the user about either the weather forecast in Munich or the current time. This
agent contains two intents, mapping different inputs to one of the two actions. The first
intent might trigger for keywords such as "weather" or "rain" in order to match questions
like "How is the weather?" and "Will it rain today?" to the action of providing weather
information. Vice versa, the DM interprets keywords like "time" or "late" as indicators to
execute the action of informing about the current time.

While this example is kept basic to help understand the fundamental mechanism be-
hind an intent, it should be noted that agents nowadays often employ machine learning
techniques to correctly assign inputs to the agent’s intents, making the process more
complex.

Additionally, the DM preserves a chat history to help with creating a suitable response.
Finally, the DM generates a semantic response which will then be transformed into natural
language by the NLG component.

The key difference between voice- and text-based agents lies in two additional com-
ponents required by the voice-based agent: A speech-to-text (STT) component and a
text-to-speech (TTS) component. The first component is used for translating the user input
to text to be then further processed by the NLU component. The TTS component receives
the response from the NLG component and then translates it into a voice-based output.
The resulting architecture of a voice-based conversational agent can be seen in Figure 2.2.

5

2. Foundations and Theoretical Background

Figure 2.2.: General design of a voice-based conversational agent, based on [4]

2.1.2. Development of a Conversational Agent

Several companies offer platforms and frameworks to support developers in creating
their own CAs, such as Amazon Lex, Microsoft Bot Framework, Watson Assistant by IBM,
Dialogflow by Google, and Rasa. In this section we compare advantages and disadvantages
of Dialogflow and Rasa. Dialogflow as the selected platform for developing the agent of
this thesis after evaluating different options and Rasa as a commonly used open-source
alternative. For a more detailed comparison of all the platforms mentioned above refer to
Dagkoulis and Moussiades [7], where Dialogflow and Microsoft receive the best ratings.
Nevertheless, the ratings should be interpreted carefully since the best suiting platform
highly depends on the specific use-case.

Dialogflow, a Google-owned closed-source platform, offers two versions: Dialogflow ES
and Dialogflow CX. The former is a lighter and more cost-effective option, while the latter
is designed for more complex and larger agents, providing additional features to manage
your agents. At its core, Dialogflow extracts the entities in user requests and then matches
the request with one of the agent’s intents, like what we have introduced in the context
of conversational agents and their general architecture. Furthermore, Dialogflow uses
contexts to track the conversation history and stores data which might be needed in future
steps of the conversation. One example where such a context is essential is a flight booking
chatbot: At the beginning of the conversation the user is asked for the departure and
destination airports. In further steps, the chatbot requests personal details and payment
information but must remember the flight’s departure and destination. This challenge
could be solved by setting a context that stores this information while continuing with the
conversation. This context can additionally help with determining the intent, as the chatbot
knows that if the context with the flight’s departure and destination airport is given, it does
not need to match to an intent which asks for this data again. Instead, the chatbot can e.g.,
match to an intent that asks for the personal details.

6

2. Foundations and Theoretical Background

One of Dialogflow’s main advantages is the ease of use. Dialogflow offers an intuitive
graphifcal user interface (GUI) as well as prebuilt agents for common use-cases. It supports
up to 123 languages and includes speech-to-text as well as text-to-speech components.
Additionally, a comprehensive online documentation and wide range of online community
resources are available. However, there are also disadvantages to using Dialogflow, in-
cluding that it cannot be run on-premises, because it is a Google product and operates
exclusively on the Google Cloud. Another drawback is the high price of Dialogflow, even
for the ES edition, especially when comparing it to an open-source platform.

This leads to the discussion of the second platform: Rasa. Rasa not only offers an
open-source edition but also an enterprise version. The enterprise version focuses on
supporting customers with the deployment of their own CAs, for example, by providing
a managed service for running the customer’s Rasa application. Additionally, it extends
the open-source version by various AI features including an LLM-native approach. As with
Dialogflow, Rasa is extracting the entities from an incoming prompt and matches it to an
intent using Rasa’s NLU and dialogue management component. Being open-source is a
key benefit of Rasa which leads to more advantages. For instance, Rasa can be deployed
on-premises and is free of charge as long as you do not use the enterprise version. Rasa is
highly customizable which is advantageous for experienced developers who are looking
for fine-grained control over their CAs. Nevertheless, for developers new to this field, this
can be a disadvantage, as it can become very time-consuming and challenging to create a
conversational agent.

In conclusion, Dialogflow is a more suitable choice for developing our agent as our
agent’s architecture is simple and therefore does not require the customizability offered
by Rasa. Neither do we require to deploy our agent on-premises. Therefore, we can
benefit from the ease-of-use and many features that Dialogflow provides. Additionally, the
ALPHA-KI project uses Dialogflow as their platform which makes it easy to integrate the
agent presented in this thesis into their existing systems.

2.1.3. Conversational Agents in Healthcare

CAs find application in the medical domain for various different use-cases. Therefore,
Montenegro et al. [8] have created a taxonomy to give a better overview of the different
fields of application. This taxonomy mentions many key areas where these agents are
making an impact, including the training of medical students, aiding in suicide prevention,
or supporting physicians in diagnosing diseases based on symptoms presented by patients.
These examples represent only a few of the numerous fields where agents are being used,
showcasing the diverse potential of conversational agents in healthcare.

A particularly unique field is answering questions of consumers who are unfamiliar with
medical terminology. As explained by Zweigenbaum [2], this area of QA can be even more
challenging than open-domain QA, i.e. responding to questions about a wide range of

7

2. Foundations and Theoretical Background

general topics. A significant challenge when it comes to CHQs is the gap between medical
jargon and consumer language.

For instance, let us consider an agent that searches through a collection of documents
on different health-related topics in order to respond to incoming questions based on one
of the documents. Let us assume, in the collection exists a document that discusses concus-
sions but refers to them as "mild traumatic brain injury (mTBI)", a term more commonly
used by physicians. If a user asks, "What can trigger a concussion?", our system must
map this question to mentioned document which might never use the term concussion but
always writes about mTBI. Although the answer might be available in this document, the
QA system may struggle to find it. If the system does determine the correct document, it
still must return a response which can be understood by the user. This possibly involves
an explanation that concussion and mTBI are the same thing or maybe replacing the term
mTBI with concussion.

Furthermore, the agent will be deployed onto the watches from the ALPHA-KI project,
which are used in healthcare, primarily by elderly people. They are not only likely to
be unfamiliar with medical terms but also they do not have the same access to online
resources, e.g. Wikipedia, as the younger generation. Thus, it is crucial to avoid any
medical terminology, keeping in mind that the users are unlikely to look up unfamiliar
terms on the internet.

2.2. Pre-Trained Language Models

Pre-trained language models represent a specific class of machine learning models which
were trained in advance and are ready for immediate use. HuggingFace1 is a platform that
provides many open-source models including pre-trained language models. They have been
trained on extensive amount of data, making them robust and suitable for many different
applications.

Transformers are a specific type of architecture that builds the foundation of most
modern pre-trained language models, first introduced in the paper "Attention is All you
Need" by Vaswani et al. [9]. In order to train a model on such a huge amount of data
efficiently, self-supervised learning strategies are applied, enabling them to learn from
the data without human intervention. Not depending on a human is essential, as it is not
feasible with the amount of data that is required to train a transformer. In the following we
explain two different types of transformer models, that are used in this thesis and explain
how they enable self-supervised learning strategies. [10]

1https://huggingface.co/

8

2. Foundations and Theoretical Background

2.2.1. Auto-Encoding Transformers

First, we discuss auto-encoding transformers which are highly important to our agent,
as we use such a model to match an incoming question to one of the questions stored
in our database. These transformer models are commonly used for question-answering
applications but also for sentence classification or named entity recognition.

The main component of an auto-encoding transformer is the encoder part. It is respon-
sible for translating input text into a contextualized representation, i.e. usually a vector
representing the meaning of the input text which takes the context into account [11].
The self-supervised learning strategy mainly applied to train auto-encoding models uses
so-called masked language modeling: With every training step the model is presented
with sentences in natural language where a random word is masked, and the model must
predict the masked word. This technique is considered self-supervised as the prediction of
the model can be directly compared to the word that has been masked in order to check
if the prediction was correct. A key aspect of such an encoder is its ability to take words
preceding and following the masked word into account when predicting the masked word.
Through training of an auto-encoding model on a large corpus of data, it learns grammar
and sentence structures only by predicting masked words. [10]

Efficiently Learning an Encoder that Classifies Token Replacements Accurately
One well-known example of an auto-encoding transformer is BERT which we use when

performing the similarity search. Moreover, we use another auto-regressive model, called
"Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELEC-
TRA)", whose training method slightly differs from the masked language modeling approach
as it trains two separate models: a generator and a discriminator. The generator is trained
to replace tokens in a given text with plausible alternatives. The main model, which is
the discriminator, is then trained to identify the "fake" tokens created by the generator.
This method is more efficient, especially when computational resources are limited [12].
ELECTRA models are commonly used for extractive question-answering tasks as the model
that we decided to use in this thesis. It was further fine-tuned on a question-answering
dataset, which leads to further performance increase in extracting the correct answer.

Both models that we use are published by Deutsche Telekom AG2 on HuggingFace and
fine-tuned with German data.

2.2.2. Auto-Regressive Transformers

The second category of transformers is utilized for the construction of our dataset of QA
pairs, namely auto-regressive transformers. They are commonly used for text generation
tasks such as creating QA pairs. Unlike auto-encoding transformers, auto-regressive
models only use preceding words for generating predictions. The self-supervised learning
strategy employed by this model family is the following: Initially, the model receives
the start of a piece of text, and its task is to predict the subsequent word. The model’s

2Deutsche Telekom AG on HuggingFace: https://huggingface.co/deutsche-telekom

9

https://huggingface.co/deutsche-telekom

2. Foundations and Theoretical Background

prediction is then compared with the actual next word from the text, providing immediate
feedback on the accuracy of its guess. This process is repeated word by word for a vast
number of texts until the model learns to generate grammatically correct sentences. This
method allows the model to generate text by considering each preceding word including
the words already generated. ChatGPT is a well-known example of such an auto-regressive
transformer that we also use for generating our QA pairs. [10]

2.3. Question-Answering

In this section we present two different approaches on QA which are commonly used
by conversational agents. The first method is a similarity-based approach as already
introduced in the previous chapter. The second strategy is extracting the response from a
collection of documents, a process known as information retrieval (IR) [1]. After presenting
technical insights to both approaches, we highlight the differences between them to avoid
any ambiguities in the coming chapters.

2.3.1. Similarity Search

Similarity search describes the process of finding the most similar item for a given query
item. In the context of this thesis this means having an incoming question from a user and
retrieving the most similar question in a large database of questions. This large database
contains questions as well as their corresponding answers. Thus, if we find a highly similar
question in this database, we can answer the user’s question simply by responding with the
corresponding answer to the matched question. The main challenge remains in finding a
suitable measure for comparing two questions, or more general two sentences. Additionally,
we aim to find that match in a feasible time which also becomes challenging regarding
the fact that we might have a large corpus of QA pairs in our database. Therefore, in this
section we will introduce the concept of embeddings as well as present three different
similarity metrics.

In order to be able to compare two sentences and measure their similarity it makes sense
to map those onto a vector space. Numerical vectors have the convenient property of being
easily comparable with high efficiency: Vectors which are close to each other are similar
and vice versa. Thus, if we map our questions to a vector in the same vector space, we can
apply different similarity metrics. That is, what embeddings are used for.

Word embeddings in the way we use it in this thesis were first introduced approximately
20 years ago by Bengio et al. [13] as a solution for the curse of dimensionality. This was
due to former approaches of embedding text as vectors had a high correlation between
the number of dimensions and the number of words in the existing vocabulary. Vocabulary
here describes the set of unique words or terms present throughout all texts used for the
similarity search. In our case that would be the unique words contained in all questions
stored in our database.

10

2. Foundations and Theoretical Background

A key advantage of embeddings is their ability to take semantic meaning into account.
This is important because if we would compare two words solely based on characters this
can lead to misleading results. For instance, if we consider the two words "cat" and "kitty"
which describe the same thing, it becomes difficult for character-based approaches to
identify their similarity.

To achieve a mapping of text to vectors which maintains the semantic meaning of the
text, we use a BERT-based transformer published on HuggingFace by Deutsche Telekom
AG3. It takes any text-string as input and returns a 1,024-dimensional vector.

Once we have computed the embeddings for two questions, we still need a suitable
metric for identifying similar vectors. As mentioned before, semantically similar text will
be represented by vectors which are close to each other in the resulting vector space.
Therefore, we aim to measure the distance between two vectors in order to compute the
similarity. Popular choices for computing the distance between two embeddings are cosine
similarity as well as Euclidean or Manhattan distance.

Cosine similarity measures the cosine of the angle between two vectors in order to
compute their similarity. It is defined by

SC(u, v) =
u · v

∥u∥∥v∥ (2.1)

where u and v are two vectors of the same length and the dot product of a vector x with
itself is defined as ∥x∥ [14]. The cosine similarity only takes on values in the range of [−1, 1]
with SC = 1 meaning the two compared vectors are equal and SC = 0 indicates two vectors
are orthogonal and therefore the corresponding sentences very different. Computing the
cosine similarity is equal to computing the dot product of two vectors with unit length [15].
Let us assume vectors u and v are of length 1, which means ∥u∥ = ∥v∥ = 1, we can then
simplify (2.1) as follows

SC(u, v) =
u · v

∥u∥∥v∥ = u · v (2.2)

Therefore, cosine similarity is very fast at comparing large amounts of vectors: It is a single
operation which can be perfectly parallelized.

Another popular metric for distance measuring of two vectors in the context of word
embeddings are Euclidean and Manhattan distance. Both consider a vector’s magnitude
in contrast to cosine similarity which only measures the relative position of both input
vectors. Thus, Euclidean and Manhattan distance return an absolute value instead of a
relative value as with cosine similarity. Euclidean distance can be defined as

DE(u, v) =

√
n

∑
i=1

|ui − vi|2 (2.3)

3Transformer for embeddings: https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-
cosine

11

https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine
https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine

2. Foundations and Theoretical Background

with vectors u and v being of length n. Manhattan distance can be written as

DMan(u, v) =
n

∑
i=1

|ui − vi| (2.4)

One might have noticed the similarites both metrics share: They are both variants of the
Minkowski distance.

DMin(u, v) = (
n

∑
i=1

|ui − vi|p)
1
p , p ∈ N (2.5)

If we set p = 1 we retrieve DMan, whereas for p = 2 the Minkowski distance equates to our
definition of the Euclidean distance.

The decision which metric to use for comparing word embeddings, highly depends on
the data, the use-case and the model used to compute the embeddings. After comparing
the performance of each metric, we retrieved satisfying results for all of them. Based on
these findings and the requirement of our final system to be highly efficient in comparing a
large number of vectors, cosine similarity seemed an appropriate choice.

Furthermore, we found comparative analysis which supported our decision, as cosine
similarity was the best performing metric [16, 17]. Although the setting and use-case of
both studies do not perfectly reflect our application, they still indicate that cosine similarity
is a valid choice. In the end, our decision mainly based on the provided efficiency.

2.3.2. Information Retrieval

Search engines are most likely the primary field of application for IR. IR can be defined as
finding the best fitting piece of information for a given query in a large corpus of documents.
In the case of search engines, the large corpus of documents are all publicly available web
pages, and the query is given by the user. In our case, IR is more relevant in the context of
answering a user’s question to a health-related topic. We need to find a document which
best answers the user’s question from a collection of documents on different topics. Then
we extract a passage from the retrieved document that answers the question.

This approach is employed by our agent’s QA pipeline. The idea is to use this as a fallback
method if the similarity-based approach failed to answer the user’s question. Therefore,
the thesis focuses on the similarity-based approach. Nevertheless, in the following sections
we explain the fundamentals about traditional IR which are the basics to understand the
full pipeline presented in subsequent chapters.

One key algorithm when it comes to information retrieval is BM25. It is used by search
engines for retrieving a ranked list of results for a given query and plays a big role in QA.
Robertson and Walker [18] were the first to introduce BM25 in 1994. The algorithm tries
to find a document from a collection of documents which matches best to a given query.
Although this ranking function is used by QA systems, the original problem statement

12

2. Foundations and Theoretical Background

is not related to question-answering, since the query does not necessarily need to be a
natural language question or statement. During the past 30 years many variants have
been developed, but the main concepts remain the same: term frequency, term saturation,
inverse document frequency (IDF) and normalization.

Term frequency is the first concept and simply counts how often a term is repeated
in a document. Documents containing the terms used in the query more frequently are
considered a better match.

However, the more times a query term appears in a document the less impact each
additional occurrence has on the overall score, what is called term saturation. There are
a few reasons why this is essential in order to retrieve the best matching document. To
illustrate, let us assume we have a document A which contains one word from our query
50 times and another document B which contains the same word 100 times. We would
agree that B is more relevant to the query, but probably not twice as relevant as A [19].

The next concept, IDF, helps with weighting terms as less important which frequently
occur in any document. It does that by counting the number of times a word is shown
throughout all documents which we have stored. Therefore, common words like "and",
"or", "if", etc. receive lower importance since they are usually frequently used in all of the
documents.

Lastly, normalization describes taking the length of each document into account in addi-
tion to term frequency. This particularly makes sense if we consider the following example.
In our database are two documents: document A which contains 500 words in total includ-
ing 100 times the word "pink", document B which contains 100 words mentioning "pink"
90 times. If the input query is "pink", document B should be considered more relevant due
to the higher frequency in relation to the length of the document. Therefore, BM25 puts
occurrences of query terms in relation to the total length of each document. For further
details, especially on mathematical background of BM25, refer to Amati [20].

Since we are in the context of QA, after retrieving one or multiple candidate documents,
we still need to identify a passage from our documents which we use to respond to the
question. A common approach is to use neural networks which take a question and a
document as an input and return a few words up to a few sentences from that document to
answer the given question. One can either decide to train their own model or use a publicly
available pre-trained model to accomplish this task. Training your own model has the
advantage of being able to fine-tune it to your specific needs or maybe a certain vocabulary
used in the given context. However, the main drawback of training your own model are the
resources it requires, not only time but also financial and computing resources.

We decided to use a pre-trained ELECTRA from HuggingFace4 which takes a question
and a text as an input and returns a passage which best answers the question. In addition
to the answer, it provides a confidence score, indicating how likely the response answers
the question. As the model achieved satisfying results when experimenting with a few

4ELECTRA model for QA: https://huggingface.co/deutsche-telekom/electra-base-de-squad2

13

https://huggingface.co/deutsche-telekom/electra-base-de-squad2

2. Foundations and Theoretical Background

sample queries, we decided to integrate it into our traditional IR approach. Otherwise, one
can consider training their own neural network or employ a different approach.

2.3.3. Similarity Search vs Information Retrieval

Throughout this chapter we can notice that similarity search and information retrieval
share similar goals and concepts. BM25, a method introduced in the context of IR, can
also be used to search for similar items as in similarity search. Accordingly, embeddings
and cosine similarity, typically associated with similarity-search, can be used in IR to
retrieve matching documents. In Chapter 5, the presenting of our results, we will see that
embeddings in the context of IR are used as well.

Following the definition of Welivita and Pu [1], the main difference between those two
approaches on QA lies in the idea of how to store the data which will be queried. For
similarity-search, a large number of QA pairs is stored in a database to then perform
different methods to identify the best matching question. In contrast, for IR a database is
populated with raw documents. The database is then queried to return one or multiple can-
didate documents from which a passage is extracted that answers the incoming question.

Both approaches offer flexibility in employing many more techniques besides embeddings
and BM25 to answer a question. As previously mentioned, there are no restrictions or rules
which similarity metrics or algorithms to use for each approach. We decided to explain
each method in the context of the approach where it is typically used. Furthermore, the
techniques introduced in this section were selected because they are widely applied, and
they are employed by our agent.

14

3. Related Work

In this chapter we provide an in-depth review of work related to this thesis. According
to our research questions, this chapter covers three topics. The first part of this chapter
concentrates on the development and evaluation of a CA and outlines different approaches
for consumer health QA. In the following part, we present different methods used in
literature to evaluate QA agents. Finally, the last part outlines different existing approaches
on creating a dataset of QA pairs which can be used by a similarity-based approach.
Although the three correlate with RQ2, RQ3 and RQ4, their order is slightly changed,
according to the decision process: First, a suitable approach for QA and for the agent
was chosen which was the similarity-based approach and afterwards we decided how to
evaluate the agent and how to construct a suitable dataset for the CA.

3.1. Conversational Agents in Consumer Health Domain

3.1.1. Existing Question-Answering Approaches

In literature we can find several approaches on classifying existing QA systems, for example
Soares and Parreiras [21] came up with four different categories. While they took QA
systems for any domain into account, Welivita and Pu [1] focused on existing QA systems in
the consumer health domain. They introduced three main categories: Traditional IR-based,
knowledge graph-based and entailment-/similarity-based approaches. These categories are
similar to the ones presented by Soares and Parreiras. Additionally, both literature reviews
introduce hybrid approaches which have integrated at least two different methods in their
system. In the following we will show three CAs each representing a different category.

Wang and Nyberg [22] presented an architecture which solely works with traditional IR.
The system is divided in three steps: Clue retrieval, answer ranking and answer passage
tiling. The first step queries a collection of documents simply by using search engines, such
as Bing Web Search and Yahoo! Answers and retrieves web pages related to the question.
The next step then ranks those candidate answers from the first step using a weighted
combination of optimized BM25 similarity scoring and two different neural networks for
estimating the relevance of each document. The first neural network uses the document’s
title and the second one the document’s text to predict the relevance. The final step then
concatenates the highest ranked answers which results in the system’s final answer.

Even though Yang et al. [23] implemented a hybrid approach which uses a combination of
a knowledge graph and traditional IR, it leads to a good understanding on how knowledge

15

3. Related Work

graphs are employed for QA. The system organizes knowledge about each medical entity
as a tree with the entity being the root element and its attributes the leaves. The entities
are stored in an array and based on the question’s focus and type the corresponding entity
is identified. The focus describes the extracted entity, e.g. hypertension. Additionally, Yang
et al. defined 23 question types, such as cause or treatment. Based on the question type
the correct leaf node of an entity can be retrieved.

The recognizing question entailment (RQE)-approach used by Abacha and Demner-
Fushman [24] relies on the concept of entailment: If a user asks a question A, they try to
find a question B which is entailed by question A, i.e. a question whose corresponding
response is also a response to question A. Assuming one finds such a question B, the
system can respond with the corresponding response to B. This approach therefore stores
a large amount of QA pairs and tries to find such a question which is entailed by the
input question. There are two main challenges with this approach: identifying an entailed
question and retrieving a set of similar questions.

Additionally, Demner-Fushman et al. [25] published the Consumer Health Information
and Question Answering (CHiQA) system which employs a hybrid approach: a component
using traditional IR and a component reusing the RQE method. Both components generate
candidate answers from which five answers are chosen to show to the user.

Welivita and Pu [1] differentiate between single-turn and multi-turn QA: The former
answers only single questions while the latter answers a question through a conversation
where the user might ask follow-up questions, coreferencing information from previous
messages.

Each of the presented approaches implements a single-turn agent that only handles a
single question at a time. A multi-turn agent, called enquireMe, was published by Wong et
al. [26]. At its core it employs a similarity-based approach. They used QA pairs extracted
from question-and-answer websites as Yahoo! Answers and Answers.com as their source
of information. When a user inputs any text, the system extracts key phrases and weights
them according to importance for extracting the meaning of the input. Those weighted key
phrases are then used to query the QA pairs for similar questions. The retrieved questions
will then be ranked based on different metrics and the answer corresponding to the highest
ranked question will be returned to the user. The conversational nature of this system is
implemented by the system remembering previous key phrases and adjusting weights if
there are key phrases which appear in the most recent input as well as in previous inputs.
Thus, the system adjusts the weights in favor of those key phrases.

3.1.2. Evaluation

The Text REtrieval Conference (TREC) is an annual event and series of evaluation work-
shops designed to compare the latest results in research in the field of IR and QA. In 2017

16

3. Related Work

TREC organized a medical subtask to evaluate QA systems which specialized on the field of
consumer health questions [27]. The questions presented here are publicly available1 and
used by many studies to evaluate their resulting systems [22, 23, 24, 28]. At the conference
the responses of the evaluated CA were assessed on a Likert scale with the four levels
correct and complete (4), correct but incomplete (3), incorrect but related (2) and incorrect
(1) [1].

Unfortunately, as with all publicly available datasets containing CHQs which we found
when researching, the questions from TREC 2017 are in English. Thus, they cannot be
used for evaluating our agent and we therefore came up with our own evaluation methods
as described in Chapter 5.

Furthermore, since there are no public datasets on evaluating conversational QA systems,
Wong et al. [26] obtained questions from the website WebMD [29] in the form of "What is
lung cancer?" and extended them by adding follow-up questions as e.g. "What causes it?"
and "What are its treatments?". This made it possible to evaluate the system’s ability of
resolving coreferences.

In contrast, our agent is more conversational in the way of asking follow-up questions
itself. It does so either to overcome ambiguity in the user’s question or to recommend new
questions, engaging the user in continuing the conversation. Therefore, this evaluation
method is not applicable to our agent.

3.2. Generation of Question-Answering Pairs

As we have decided to employ a similarity-based approach, we require a dataset of QA
pairs which builds the foundation of the resulting CA. Therefore, the overall accuracy in
answering a question highly depends on the quality of the dataset.

A simple approach to obtain a dataset is to reuse an existing, publicly available set of
QA pairs, for example the MedQuAD which contains 47,457 medical QA pairs [24] which
is referenced by a few studies [24, 30, 25]. However, this dataset is an exception as
generally there is a lack of high quality medical QA datasets [3]. Furthermore, in this
thesis we require a dataset of German QA pairs which additionally needs to be designed
for voice-based output, i.e. not allowing answers longer than two sentences.

Since, to the best of our knowledge, there do not exist any datasets fulfilling those
requirements, we decided to generate our own QA pairs. Some papers scrape different QA
forums as Yahoo! Answers for creating such a database [26, 31]. Similarly, the previously
mentioned MedQuAD dataset was also automatically generated by crawling various trusted

1https://github.com/abachaa/LiveQA_MedicalTask_TREC2017

17

https://github.com/abachaa/LiveQA_MedicalTask_TREC2017

3. Related Work

medical websites, e.g. National Cancer Institute2 or Genetic and Rare Diseases Information
Center3 and parsing them into handcrafted patterns [24].

In other domains than the health domain one can find approaches on automatically
generating QA pairs using an LLM. Kalpakchi and Boye [32] automatically generated a
dataset of open-domain multiple-choice questions using GPT-3. Samuel et al. [33] presented
a system which first synthesizes a new context and then uses the synthetic context to
automatically generate new questions. This approach was designed for areas with sparse
online resources available, including covid as a health-related topic.

3.3. Novelty of Our Approach

When reviewing literature on the creation of a QA system for CHQs, one can find a
few different approaches especially motivated through the medical subtask at the TREC
2017. If one limits the search further to a similarity-based approach, only two or three
conversational agents can be found. To the best of our knowledge, setting up a pipeline for
QA which mainly bases on a similarity-based approach that uses a BERT model to compute
embeddings, was not developed by any previous research. Furthermore, although our
agent might not handle coreferences as does enquireMe [26], the agent’s QA pipeline poses
follow-up questions for disambiguation, employs traditional IR as a fallback strategy and
recommends new questions to keep the user engaged. These features, which contribute to
a more conversational system, have not been integrated into any existing QA systems in
consumer health domain, as they solely focus on answering a user’s question.

Additionally, within our domain, our research did not find any existing literature on
creating a dataset of QA pairs based on data crawled from online resources using a LLM,
as of November 2023. Therefore, regarding the implementation of a CA using a similarity-
based approach with an automatically generated dataset of QA pairs, it seems we are the
first to develop such a system. With this contribution we aim to initiate more in-depth
research in this direction.

2National Cancer Institute: https://www.cancer.gov/types
3Genetic and Rare Diseases Information Center: https://rarediseases.info.nih.gov/

18

https://www.cancer.gov/types
https://rarediseases.info.nih.gov/

4. Methods

This chapter briefly introduces the methods applied for answering each research question.
According to the research questions we have outlined four major steps, as illustrated in
Figure 4.1.

Figure 4.1.: Overview of different steps performed to answer each research question

4.1. Literature Review

In this section we explain our methods for the first step of this thesis which focused on
exploring existing approaches in literature. Therefore, we systematically searched for any
scientific resources related to our topics as this step set the foundation for answering the
other research questions.

We divided our research into two separate steps: First finding existing approaches on
automatically generating QA pairs using an LLM and second building a CA in the consumer
health context. For both steps, our primary research tool was Google Scholar1. Additionally,
we used backward search, i.e. reviewing references cited in each paper found.

For the first part, we performed the following queries, annotated with the number of
results:

• "question answer generation" "health" "llm" (9 results)

1Google Scholar: https://scholar.google.com/

19

https://scholar.google.com/

4. Methods

• "question answer generation" "llm" (51 results)

• "qa pair generation" "llm" (10 results)

• "generating qa pairs" "llm" (14 results)

• "creating qa pairs" "llm" (2 results)

The query always contained information about the desired action, i.e. generating question
answer pairs, as well as information about the technology to use which in our case is
an LLM. In the beginning of our research, we have limited our research to the health
domain, which led to only nine results with one paper being relevant. Because of the lack
of literature, we broadened our search to include QA dataset generation across all domains.
The resulting four queries returned on average 19,25 results where we selected nine based
on title and abstract to be further investigated.

We also explored alternative approaches than using an LLM to generate QA pairs. We
applied the two search strings "question answering" "health" and "consumer question
answer" "health" but found no useful studies. However, in the second part of our literature
review, when analyzing existing solutions on QA in the consumer health domain, one
relevant paper introducing an alternative approach was retrieved.

Overall, we have identified four helpful papers on generating QA pairs helping us to
determine an effective prompt design and understanding the impact of different hyperpa-
rameters when using GPT-3.5-Turbo for text generation. Unfortunately, one of the papers
is not accessible online which reduces the number of relevant results to three.

For the second part of this literature review, the following were our performed queries
with the corresponding number of results:

• "conversational question answering" "health" (457 results)

• "conversational agent" "health" (12,000 results)

• "question answer" "health" (48,300 results)

• "consumer question answering" "health" (43 results)

We structured the query as a combination of the type of system we want to build, e.g.
"question answering", and the domain we are interested in, namely the health domain. As
the number of results was too large to read through all of them, we decided to only take
the top 20 results per query into account.

Based on our pre-selection, we could identify four highly relevant surveys presenting
various approaches on conversational agents in the health domain. From here we used
backwards search to read through all the presented CAs that covered the consumer health
domain. In total those were 19 candidate agents that we investigated in detail and a

20

4. Methods

number of seven that were relevant to this thesis. Those agents helped us especially with
identifying the challenges and advantages of different solutions including the similarity-
based approach that our agent mainly relies on.

4.2. Generation of Question-Answering Pairs

After our in-depth review of existing solutions, we started with generating the dataset of
QA pairs. The pipeline used for automating this process is shown in Figure 4.2.

Figure 4.2.: Pipeline for automatic generation of QA pairs

The first step of the pipeline was to collect data from various sources. The first source is
the German health magazine Apothekenumschau2 which publishes articles about a diverse
range of health topics, usually as a printed magazine. However, they also publish articles
online on their website which they ensure to validate by health experts.

Another source used for constructing our dataset were PDF documents, published by
three different German health organizations. The first, Deutsche Hochdruckliga e.V. -
Deutsche Gesellschaft für Hypertonie und Prävention3, aims to support research and
prevention in the field of high blood pressure. The second organization we conducted PDF
files from, Nationale VersorgungsLeitlinie, is an initiative formed by various professional
societies, healthcare organizations and the German government providing information for
patients and the public. Lastly, we used data from ANS-Ambulanz der Uniklinik RWTH
Aachen4, a clinic associated with RWTH Aachen University.

After collecting the data, we processed it through an LLM in the second step of our
pipeline. We decided to use GPT-3.5-Turbo by OpenAI5 because it is one of the leading
LLMs and provides an application programming interface (API) to send your requests
to. Therefore, with this choice, it is not required to deploy our own model, saving both
resources and time.

2Apothekenumschau: https://www.apotheken-umschau.de/
3Deutsche Hochdruckliga e.V. - Deutsche Gesellschaft für Hypertonie und Prävention:

https://www.hochdruckliga.de/
4ANS-Ambulanz: https://www.ukaachen.de/kliniken-institute/ans-ambulanz/die-ans-ambulanz/
5OpenAI: https://openai.com/

21

https://www.apotheken-umschau.de/
https://www.ukaachen.de/kliniken-institute/ans-ambulanz/die-ans-ambulanz/
https://openai.com/

4. Methods

Next, we add some metadata to our QA pairs and store them in a database. In the last
step of our pipeline, we validated our QA pairs by sending them to several health experts
which review and annotate all the QA pairs. This feedback will also be presented in the
following chapter as it provides valuable insights on the quality of our resulting dataset.

4.3. Development of a Conversational Agent

In parallel with the construction of the dataset of QA pairs, we started to develop our
agent and integrated the dataset as its knowledge base once it was finished. As evaluated
in Chapter 2, Dialogflow was our choice for developing the agent. Additionally, we set
up a Python Flask app to serve as a webhook service. This service, to which Dialogflow
redirects all incoming requests, allows to implement more complicated logic. In this
Flask application, we integrated a whole pipeline of steps to process, analyze and answer
incoming questions. At its core, the process used the similarity-based approach with our
constructed dataset but additionally, a traditional IR approach was implemented as a
fallback method.

4.4. Evaluation

The last step was the evaluation of the resulting system. We split the evaluation into two
parts: an automatic evaluation and conducting qualitative user feedback. For the automatic
evaluation, we selected a subset of our QA pairs, slightly changed the wording using an
LLM and measured how often our agent could correctly match the changed questions to
the original ones. This approach aims to evaluate the matching performance of our agent.

Furthermore, we asked a group of test users to interact with our final agent. Afterwards,
they filled out a form which we then analyzed. This second evaluation strategy aims at
assessing conversational features, such as the ability to handle ambiguous questions and
to engage the user in further interactions after the initial question was answered.

22

5. Results

5.1. RQ1: Literature Review

This section answers the first research question "What existing approaches are there in
conversational question answering in context of health-related topics? by addressing the
papers selected from our literature research in more detail. As explained in Chapter 4,
we divided our research into two parts. We start with presenting methods on using LLMs
to automatically generate QA pairs, before moving on to approaches for conversational
agents in the health domain.

5.1.1. Generation of Question-Answering Pairs

As already mentioned in Chapter 3, it was difficult to find any studies that focus on au-
tomatically constructing a dataset of QA pairs using LLMs. As we aim to learn from the
challenges and decisions of others, we decided not to restrict ourselves to only health-
related approaches for this section.

Samuel et al. [33] generated questions across three different domains: Healthcare, public
policy, and technology. Their main idea was augmenting data in low resource fields to then
generate QA pairs which can be used to improve the performance of QA systems. As we are
not looking to augment contexts, the study is not exactly reflecting our use-case. However,
the approach gives valuable insights on how to enable few-shot learning for generating QA
pairs, i.e. a strategy for improving the results of an LLM by providing example outputs.

The second interesting finding was published by Kalpakchi and Boye [32] who generated
Swedish multiple-choice questions for open-domain topics. They sent texts from the
national tests of Swedish for Immigrants courses to GPT-3 to generate multiple-choice
questions. For each question, GPT-3 was instructed to create four different answers where
the first answer should always be the only correct option.

Although they decided to use zero-shot learning, i.e. not providing any examples to the
LLM on how to respond, a key takeaway from this paper was the prompt design. They
instructed GPT-3 exactly on how many questions to generate based on the length of a text:
the longer the text the more questions were asked for in the prompt. The model produced
for 89.6% of the prompts the desired number of questions. Mainly for long texts it produced
less questions than asked for. This underpins our decision to send single paragraphs of
text to the model instead of the whole article.

23

5. Results

Another interesting insight is on ChatGPT’s ability to generate questions in another
language than English, which in this case was Swedish. GPT-3, the model used in this study,
was trained on 92.6% English data and only 0.11% Swedish data and still, the results from
this paper were satisfying. In this thesis, we use the GPT-3.5-Turbo model, and although
there is no detailed information on the model’s language training distribution, it most likely
was not trained on much German data. Thus, the results from Kalpakchi and Boye indicate
that using GPT-3.5-Turbo in another language than English can lead to satisfying results.

Furthermore, for generating the questions, the hyperparameters of GPT-3 were set
to default, a setting we also applied when generating our QA pairs. Hyperparameters
are configurations available when interacting with GPT through the API that influence
GPT’s behavior. Kalpakchi and Boye explained that the choice of hyperparameters is a
trade-off between correctness and creativity: If the values for different hyperparameters
get maximized, they lead to more creative answers but at the same time more creativity
can result in the model "drifting away" from the original text. According to Kalpakchi and
Boye it would be impossible to find the perfect degree between those two goals, which was
their reason to use the default hyperparameters.

The last approach to be presented does not employ an LLM to generate QA pairs but
instead creates a large corpus of 47,457 medical QA pairs, called MedQuAD. It is used by
several QA systems presented in Chapter 3 and was published by Abacha and Demner-
Fushman [24]. They used a rule-based approach where they crawled data from various
trusted medical online sources, taking advantage of the fact that articles from the same
source often expose similar patterns. For instance, 116 articles on various cancer types
were crawled from the National Cancer Institute (NCI) 1 which reveal a uniform structure
across all articles. This uniformity allowed to use the headline of a section to predict the
section’s content. For instance, anytime a headline contains the words "may increase the
risk of [DISEASE]", the following section mentions the risk groups for the given cancer
type. This was used by Abacha and Demner-Fushman to create a QA pair for each of these
116 articles with the question "Who is at risk for [DISEASE]?" and the identified section as
an answer.

Although this is a smart approach, it is neither feasible to use the MedQuAD dataset
nor to apply a rule-based approach in a similar way. Besides the dataset being in English,
this is due to the fact that the answers from each QA pair are sections from the crawled
articles. As our agent is voice-based we aim for answers which are one or two sentences
long to keep the user interested.

5.1.2. Existing Conversational Agents for Answering Consumer Health
Questions

As mentioned in Chapter 4, we retrieved four relevant surveys [1, 8, 21, 34] which we used
to find existing CAs through backward search. The study by Welivita and Pu [1] stands out

1NCI: https://www.cancer.gov/types

24

https://www.cancer.gov/types

5. Results

as it was recently published and focuses on the consumer health domain.

As we have already presented the survey by Welivita and Pu as well as different con-
versational agents in Chapter 3, we now aim to present the CA which shares the most
similarities with our final approach. After careful consideration, we decided the CHiQA
system pubslished by Demner-Fushman et al. [25] is the most similar. Our CA mainly uses
a similarity-based approach, which is employed by three other agents: EnquireMe [26],
the question-entailment approach by Abacha and Demner-Fushman [28] and CHiQA. All of
them were already presented in Chapter 3 hence we will not revisit their implementation
details.

Although our agent also emphasizes the conversational aspect, it differs from the en-
quireMe approach: Our CA does not aim to handle coreferences which is the core concept
of enquireMe. Therefore, we thought presenting either the question entailment approach
by Abacha and Demner-Fushman [28] or the CHiQA agent [25]. Since the QHiQA system
employs the question entailment approach and additionally adds a traditional IR approach,
it comes the closest to our solution.

CHiQA is a text-based conversational agent where users can ask one question at a time
and retrieve up to five possible answers. The architecture of CHiQA, illustrated in Figure
5.1, consists of two main elements: the traditional IR and the RQE component. Both com-
ponents generate candidate answers from which the resulting five answers are chosen by
a simple team-draft interleaving algorithm [35]. This method ensures a balanced selection
from two lists while preserving the original ranking order.

The traditional IR component aims to first extract the type and focus of an incoming
question in order to answer the user’s question by searching MedlinePlus2. The question
focus refers to the central disease or syndrome of the question whereas the question type
indicates the particular aspect of the disease or syndrome that the question is address-
ing [36]. For instance, if a user asks "What are the symptoms of diabetes?", the focus
would be "diabetes" and the type would be "symptoms". For extracting both, they use
a combination of different methods, inlcuding a long short-term memory, i.e. a specific
implementation of a neural network, which was trained to identify focus and type of a given
question. With the question focus and type extracted, CHiQA then queries a document
collection using a variation of the BM25 algorithm to retrieve candidate answers.

Next, we have a detailed look at the RQE approach enabled by CHiQA. The foundation
for this approach is the MedQuAD [24] dataset which serves as the knowledge base. The
questions from this QA dataset were all indexed as well as synonyms for each question focus
and triggers for the question type were added. For a deeper understanding, we provide an
example from the RQE approach published by Abacha and Demner-Fushman [28]: Consider
the question "What are treatments for Torticollis?" with "Torticollis" being the identified

2MedlinePlus: https://medlineplus.gov/

25

https://medlineplus.gov/

5. Results

focus and "Treatment" being the identified type. To improve searching performance, the
following focus synonyms were extracted automatically from the MedQuAD dataset: "Spas-
modic torticollis, Wry neck, Loxia, Cervical dystonia". Furthermore, the CHiQA system
defines 37 question types and corresponding trigger words. The following triggers were
then added to the example question based on the identified type: "relieve, manage, cure,
remedy, therapy".

Figure 5.1.: Schematic representation of CHiQA, based on [25]

After all the questions were indexed and enriched with focus synonyms and type triggers,
the Terrier search engine3 was used to retrieve the top 100 questions from the database
to a given user question. Next, a logistic regression model is applied to classify entailed
questions. As explained in Chapter 3, a question A is entailed by question B if all responses
to A are also responses to B. The 100 questions are then ranked by a weighted combination
of results from the entailment approach and the similarity score from the Terrier search
engine.

In the TREC2017 LiveQA track’s medical task, CHiQA achieves an average score of 1.308
which is approximately twice the best average score achieved at the event itself. Demner-
Fushman et al. explain this performance with the hybrid approach used by CHiQA [25].

3Terrier: http://terrier.org/

26

http://terrier.org/

5. Results

However, CHiQA was released in 2020 and therefore benefits from three years of research
on QA systems.

Besides the insights on how to setup a hybrid approach for QA, the published paper
was helpful as it reminded us of the importance of the type of questions a user might
ask. This was emphasized during the evaluation of the CHiQA system, which enabled
two datasets: The Alexa dataset containing simple questions and the questions from the
TREC2017 which often contain complicated nested questions with multiple types and foci.
There is a significant drop in performance between those two evaluation methods. This
made us more aware of users who first explain a lot of background on their medical history
before asking their question, a far more challenging task than answering a question which
consists of a single sentence.

5.2. RQ2: Construction of Question-Answering Dataset

In this section we present our pipeline for automatically generating German QA pairs for
the following three health-related topics: cardiovascular diseases, mental illnesses, and
postural tachycardia syndrome (PoTS). As introduced in Chapter 4 and illustrated in Figure
4.2, this process consists of four main steps: collecting data, sending the data to an LLM
to generate the QA pairs, storing the QA pairs with relevant metadata in a database and
finally validating the QA pairs.

The main objective of this pipeline is to generate as many and unique QA pairs as possible
because they build the foundation for the final CA.

Additionally, after the different steps of the pipeline were presented, we briefly evaluate
the quality of our resulting dataset. This is achieved by reviewing the feedback retrieved
from the health experts who validated our QA pairs.

5.2.1. Extraction of Data

The first step of our pipeline was to collect data from the sources presented in Chapter 4.
In total, from Apothekenumschau, we crawled 33 articles about cardiovascular diseases
and 14 articles on mental illnesses. From Nationale VersorgungsLeitlinien, we obtained
one article on blood pressure and 21 on depression. ANS-Ambulanz der Uniklinik RWTH
Aachen provided one article and one file on PoTS.

Additionally, we extracted data from two articles on blood pressure published by Deutsche
Hochdruckliga e.V. - Deutsche Gesellschaft für Hypertonie und Prävention. These docu-
ments varied in length with most consisting of one or two pages, and some files containing
more than 140 pages.

For crawling the data from Apothekenumschau, we used the Python library Scrapy4

which offers a set of functions to simplify the process of extracting HTML source code from

4Scrapy: https://scrapy.org/

27

https://scrapy.org/

5. Results

websites. Additionally, we used Beautiful Soup5, another Python library for efficiently pro-
cessing HTML source code which is known for its robust parsing capabilities. Furthermore,
the PyMuPDF library6 helped with extracting information from PDF files by converting
PDF files into a format that could be easily read and processed.

All the data extracted was stored paragraph by paragraph. This would help us when
sending the data to ChatGPT for generating the QA pairs mainly for two reasons: First, we
cannot send unlimited text to the LLM because there are restrictions on the length of the
input text. Second, we noticed, that sending short paragraphs instead of long articles to
the LLM would result in more QA pairs.

Additionally, we maintained the hierarchy of our source text by saving the corresponding
headlines as well as any subheadings for each paragraph. Since we only sent small
paragraphs instead of the whole article or file, those headings can provide relevant context
information when prompting the LLM, assuring higher quality QA pairs.

5.2.2. Generation of Question-Answering Pairs

In the second step of our pipeline, we generate the QA pairs using GPT-3.5-Turbo which
offers different hyperparameters to configure the model’s behavior. However, we decided
to retain the default settings since we did not notice any improvements when experimenting
with the settings.

In addition, as Kalpakchi and Boye [32] explained, on the one hand we aim to generate
creative questions but on the other hand the questions should stay close to the original
text. Thus, the default parameters offer a good balance between those two contradicting
goals. The only parameter which was configured is the maximum token length to be the
highest number possible to avoid any responses being cut off. Our final configurations are
therefore as follows:

• temperature of 0.7

• maximum length of 4,000

• "top p" of 0.95

• frequency and presence penalty of 0

• no custom stop sequences

The temperature and top_p affect the randomness of the model’s response. The tem-
perature can range from 0 to 2 and top_p from 0 to 1, where higher values result in less
deterministic and more random outputs. The frequency and presence penalty control the
use of creative words by penalizing the repetition of already existing words in the input as
well as the text that has been generated so far. The key difference is that the frequency

5Beautiful Soup: https://www.crummy.com/software/BeautifulSoup/
6PyMuPDF: https://pymupdf.readthedocs.io/en/latest/

28

https://www.crummy.com/software/BeautifulSoup/
https://pymupdf.readthedocs.io/en/latest/

5. Results

penalty is applied to all words that have been used once whereas the presence penalty is
proportional to how often a word has occurred. Both values must be in the range from -2
to 2 with larger values causing more creative results. [37]

We sent our data to an API provided by OpenAI in order to generate the QA pairs. The
API request requires multiple parameters: The configurations mentioned above, some
secret key and additionally a JavaScript Object Notation (JSON) array, called message.
The message array can include the following three parts: A system instruction, previous
chats, and the actual prompt. The system instruction influences ChatGPT’s behavior for
the task. It specifies how to interpret and respond to the given prompt. Moreover, previous
chats are provided in the message array because ChatGPT itself is stateless, i.e. it does
not store any chat history. Thus, to enable one of ChatGPT’s main features, the ability to
reference content from previous messages, we need to provide those messages in each
prompt. Finally, with the term prompt we are exclusively referring to the last message that
ChatGPT responds to. While some may use prompt to describe the whole message array,
we will adhere to our definition.

The message array must follow a specific structure in order to be understood by ChatGPT.
It is an array of JSON objects, each object representing a message, and it defines two keys:
role and content. The role specifies who wrote the message and has the possible values
system, user, and assistant. If a message indicates the role system, it contains a system
instruction, if a message specifies to be written by the user, it was a message sent by a
user and in the case of the role being assistant the message was generated by the model.
The second key of each message object is the content which is a string value containing
the content of the message. The following example illustrates such an array:

1 {
2 "role": "sytem",
3 "content": <content>
4 },
5 {
6 "role": "user",
7 "content": <content>
8 },
9 {

10 "role": "assistant",
11 "content": <content>
12 },
13 {
14 "role": "user",
15 "content": <content>
16 },

Furthermore, using previous chats supports a method called few-shot learning. This is
another method for instructing ChatGPT how to handle the prompt. We simply simulate

29

5. Results

previous chats by writing an example prompt followed by a manually created response
that functions as an example output. ChatGPT will mimic the style of the provided examples.

Designing and improving existing prompts is called prompt engineering, a challenging
task as slight changes can lead to completely new outcomes [38]. In order to achieve
satisfying results, we spent many iterations of refining and testing our prompt. In the
following, we explain each of the three parts of our message array used to generate our QA
pairs.

The first part, the system instruction, can be seen in Listing 5.1. The challenge was to
be as concise and short as possible while integrating all our requirements in the system
instruction. Mentioning different requirements twice, seemed to result in a shift of which
requirement the model puts its focus on but as far as we tested it, reduced the quality of
requirements that were mentioned a single time. Therefore, we avoided repeating any
requirements.

Besides instructing the system to generate medical QA pairs to a given input context, we
integrated the following requirements:

• Avoid hallucinations: The model should only use the information from the input
context and not any of its own knowledge.

• Ignore irrelevant information: ChatGPT should ignore information which is not about
health topics, e.g. often we extracted paragraphs which give some background
information on the author.

• Format response: The resulting QA pairs should be formatted as a JSON which can
then be immediately parsed.

• Be short: The model was advised to generate short answers, because our CA is
voice-based and users quickly get bored with long responses.

• Allow empty responses: If the model cannot identify any useful text for generating
QA pairs, it should return an empty array.

• Optimize quantity: The model should come up with as many QA pairs as possible
without violating the previous requirements.

Listing 5.1: System instruction to generate QA pairs

1 {
2 "role": "system",
3 "content": "Du bist ein Frage-Antwort-Generator für medizinische Fragen in

verständlicher Sprache. Dir werden ein Thema und Kontext vorgegeben
und du formulierst ausschließlich aus dem Kontext Fragen-Antwort-Paare,
die auf wissenschaftlichen Fakten basieren ohne personenbezogene oder
anekdotische Informationen. Generiere mehrere Frage-Antwort-Paare im

30

5. Results

JSON Format: [{’question’: ’<frage>’, ’answer’: ’<antwort>’}].
Generiere sehr kurze Antworten in ein bis maximal zwei Sätzen. Gib []
zurück, wenn du keine Frage-Antwort-Paar aus dem Kontext formulieren
kannst. Versuche möglichst viele sinnvolle Frage-Antwort-Paare zu
generieren."

4 },

Next, we input our examples to employ few-shot learning. We decided to use two
examples: One showcasing an input context with useful information where we simulated
the system generating as many QA pairs as possible and one input context without any
useful information where the system responds with an empty array. The examples formatted
as a JSON can be seen here:

Listing 5.2: Few-shot examples

5 {
6 "role": "user",
7 "content": "Thema: Heuschnupfen Allergie, Kontext: Menschen mit einem

allergischen Schnupfen müssen häufig niesen, ihre Nase läuft oder ist
verstopft. Bei starken Beschwerden fühlen sich viele zudem schlapp und
müde. Wenn auch die Augen tränen und jucken und die Augenlider
anschwellen, spricht man von einer allergischen Rhinokonjunktivitis -
einem allergischen Schnupfen, der mit einer Bindehautentzündung
einhergeht. Die Beschwerden treten nur in den Zeiten des Pollenflugs
auf."

8 },
9 {

10 "role": "assistant",
11 "content": "[{’question’: ’Welche Symptome treten bei allergischen

Schnupfen auf?’, ’answer’: ’Symptome von allergischem Schnupfen sind h
äufiges Niesen, eine laufende oder verstopfte Nase, allgemeine Schwä
che und Müdigkeit. Zusätzlich können tränende und juckende Augen sowie
geschwollene Augenlider auftreten.’}]"

12 },
13 {
14 "role": "assistant",
15 "content": "[]"
16 },

The last part of our prompt is the actual input context. Here, we first provide information
about the topic that the context is about and then append the text of a single paragraph
which we extracted from one of our sources. For this we extracted the headlines to each
paragraph as explained in the previous section.

Additionally, most articles have various subheadings which were all extracted in addition
to an article’s headline. The prompt always starts with the headline of the overall article

31

5. Results

and is followed by the content of the paragraph. Since the subheadings often contain
relevant information for ChatGPT to better understand the text, they were added to the
paragraph. We simply concatenated the paragraph with its heading and any existing
subheadings, using newline characters to separate them. The following is one extracted
paragraph from an article on "Apothekenumschau" about high blood pressure as the prompt
already suggests.

Listing 5.3: Input context

17 {
18 "role": "user",
19 "content": "Thema: Bluthochdruck: Die schleichende Gefahr, Kontext: Was

ist normal, ab wann besteht Bluthochdruck?\nWas bedeuten die Blutdruck-
Werte?\nAuf dem Blutdruck-Messgerät stehen zwei Werte:\n- Der höhere
Wert ist der systolische Blutdruck. Er entsteht, wenn das Herz sich
zusammenzieht und das Blut in die Gefäße pumpt - dann ist der Druck am
höchsten.\n- Der niedrigere Wert ist der diastolische Blutdruck. Er
entsteht, wenn das Herz sich wieder weitet, um sich erneut mit Blut zu
füllen.\nBei einem Blutdruck von 120/80 mmHg liegt der systolische
Druck bei 120, der diastolische bei 80 mmHg."

20 }

The article’s headline is introduced by "Thema:" (English: "Topic:") and the paragraph’s
text by "Kontext:" (English: "Context:"), like the few-shot examples. It is important to stick
to the formatting used in any provided few-shot examples to ensure clarity for ChatGPT.

The provided paragraph in this example prompt was extracted from Apothekenumschau7

from an article called "Bluthochdruck: Die schleichende Gefahr" (English: "High blood
pressure: the insidious danger"). The paragraph is preceded by one headline ("Was ist
normal, ab wann besteht Bluthochdruck?") and a subheading ("Was bedeuten die Blutdruck-
Werte?") which can be spotted at the beginning of the input context provided in the prompt.
Moreover, this example illustrates the use of newline characters ("\n") to separate the
headline from the subheading as well as the subheading from the paragraph itself.

5.2.3. Further Processing

After generating all our QA pairs, we added some useful metadata and processed the data
before storing each pair in a database. In this section, we discuss these processing steps.

Firstly, we ensured that each generated answer was not overly complex since our agent
is voice-based and long answers tend to lose listeners’ attention. We classified each answer
which exceeds a threshold of 25 words as too long. This is since we experienced a lack in
attention with answers longer than two normal sized sentences which equals approximately

7Apothekenumschau article from example prompt: https://www.apotheken-umschau.de/krankheiten-
symptome/herz-kreislauf-erkrankungen/bluthochdruck-die-schleichende-gefahr-1013191.html

32

https://www.apotheken-umschau.de/krankheiten-symptome/herz-kreislauf-erkrankungen/bluthochdruck-die-schleichende-gefahr-1013191.html
https://www.apotheken-umschau.de/krankheiten-symptome/herz-kreislauf-erkrankungen/bluthochdruck-die-schleichende-gefahr-1013191.html

5. Results

25 words. The answers which then labelled as too long, were sent to ChatGPT another time
to be refactored. To achieve more efficiency, we sent 10 answers formatted as a JSON array
to ChatGPT, requesting each to be reformulated in order to be a maximum of 25 words long.
In case ChatGPT did not manage to shorten an answer appropriately, we simply removed
the corresponding QA pair. Otherwise, the former answer was replaced with the shorter
version.

Furthermore, we computed embeddings for each question as these were used by our
agent to compare similarities between a user’s question and the stored questions. As previ-
ously outlined, we used a pre-trained auto-encoding transformer published by Deutsche
Telekom AG8 as this model was fine-tuned on German data. As computing embeddings for
a large number of questions costs time, it should be done in advance to using our agent.

With the embeddings added to each QA pair, we could perform another processing step:
We checked whether each question generated was semantically unique within our collection.
Therefore, we computed the cosine similarity of one question to all the other questions. We
assumed two questions to be semantically identical if the exceeded a similarity of 96%. This
threshold was chosen to be very strict as it avoids removing any closely related questions
which might achieve high similarity but still are unique. This step helped cleaning our
resulting dataset as we had different articles covering the same topic which sometimes led
to QA pairs asking the same question with slightly different sentence structure.

The next processing step was to add some information about which text was used to
generate the QA pair. This included adding the context that was provided when prompting
ChatGPT as well as adding the name of the source this context came from.

Lastly, we prepared our dataset for recommending new questions after the user’s initial
question was successfully answered. This step involved the following two challenges:
Identifying questions that generally arouse the user’s interest and suggesting questions
related to the user’s original query.

Our ideas to address these challenges will be presented in Section 5.3.3 where the
recommendation system of our final agent is explained in detail. For now, we aim to
mention all the information that we store with each QA pair. Thus, for identifying interesting
questions we labelled each question that is less than eight words long as what we call
a beginner question. These labelled questions were then rephrased using ChatGPT in
order to be used as engaging follow-up questions. We instructed ChatGPT rewrite a given
question to begin with "Do you want to know ...". For instance, the question "What is
hypertension?" would result in "Do you want to know what hypertension is?".

Additionally, to ensure recommending a related question, we assigned each QA pair to
a subject. The resulting subject were then organized into a three-level taxonomy. The
top level consisted of the three main topics that we crawled data on, i.e. cardiovascular

8Model for Embeddings: https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine

33

5. Results

diseases, mental illnesses and PoTS. The middle level divided each of these topics into what
we called subtopics, while the last level contained all the subjects which we initially as-
signed our QA pairs to, we called these subsubtopics. Further details follow in Section 5.3.3.

To sum all of our processing steps up, we present the columns of the final QA dataset
with brief explanations:

• question: generated question

• answer: generated answer

• complexity_level: labeling a question as beginner or intermediate question

• recommendation: containing a rephrased version of each beginner question

• context: context used to generate the QA pair

• source: source information in human readable format

• source_re f : raw source information, e.g. link to a website

• topic: top level of taxonomy

• subtopic: middle level of taxonomy

• subsubtopic: bottom level of taxonomy

Overall, after removing duplicate questions in this processing step, we generated a total
of 3,581 QA pairs. After a first review by some health experts, we received the feedback
that the answers which we shortened on purpose are sometimes too short to convey the
relevant information to answer the corresponding question. Therefore, we send all our
crawled paragraphs a second time to ChatGPT and added all the QA pairs which were
longer than 25 words. These were labelled as complex questions which we are currently
ignoring with our agent. Possibly a future version of our agent could use them if a user
seems highly interested and the system thinks answer which are slightly longer will not
reduce the user’s attention. This leads to a total of 4,335 QA pairs in our final dataset.

Most of these pairs covers the topic depression with 858 questions and the second
most QA pairs were created on the topic high blood pressure with a number of 737
pairs. Furthermore, we labelled 1,823 QA pairs as beginner questions and 754 as complex
questions.

5.2.4. Validation

The final step of our pipeline QA generation pipeline is the validation of each QA pair by a
team of health experts. This step is crucial to avoid any misleading or false information

34

5. Results

which could lead to serious consequences in the context of health-related questions. There-
fore, all our QA pairs were sent to different health professionals where each is specialized
on one of the three domains covered by our QA pairs. They received an Excel-sheet
containing the questions, corresponding answers and assigned topics from our taxonomy.
The task for the professionals was then to provide feedback on correctness of the answer,
correctness of the assigned topic and text quality for each pair.

The health experts are not completely finished by the time this thesis is submitted but
provided feedback for most of the QA pairs. We present this feedback in order to assess the
quality of our generated dataset and determine potential limitations of the QA generation
pipeline.

The majority of the QA pairs were approved by the health professionals. However, the
feedback also highlighted different issues in the generated dataset which we have di-
vided into the following three categories: answers containing wrong information, answers
which are wrong because they miss important information and useless but correct QA pairs.

The first category was rare but still some QA pairs contained incorrect information. For
instance, the answer to "Was ist das Posturale Tachykardiesyndrom?" (English: "What is the
postural tachycardia syndrom?") contained the information that PoTS is accompanied by a
drop in blood pressure. Our health experts pointed this mistake out, as the blood pressure
eventually increases but not necessarily drops when suffering from PoTS. Interestingly,
ChatGPT generated another QA pair where the question was semantically identical, but the
provided answer did not include any wrong information. When further investigating the
provided context used for generating the faulty answer, it was noticeable that the context
did not contain this false information. This suggests that the error was a result of the
model hallucinating and not following the instruction to only use provided knowledge.

Furthermore, the input context did not contain any useful. Thus, this was the only QA
pair being generated for this context. It seems as if ChatGPT struggles to answer with an
empty array which would have been the expected answer and rather generates some faulty
data. This was observed in a few other cases.

The second category of errors were answers which omitted important information. They
appeared more frequently than the first category but still were relatively rare. The following
is an example from our constructed dataset: The question "Für welche Art von Depression
empfehlen Fachleute Johanniskraut?" (English: "What type of depression do experts recom-
mend St. John’s wort for?") was answered with "Fachleute empfehlen Johanniskraut nur bei
einer leichten oder mittelschweren Depression." (English: "Experts recommend St. John’s
wort only for mild or moderate depression."). Although the answer is correct, it misses
one relevant detail: St. John’s wort should be bought from a pharmacy and prescribed
by a doctor to ensure correct dosage. Even though this information was included in the
input context sent to ChatGPT, it was not included in the response. In the case of this

35

5. Results

example, it is most likely because the LLM did not recognizes this information as crucial.
However, we have found other cases where it seems as if shortening all the answers to
25 words led to removing important information. As the health experts noted this effect
as well, we decided to create the 754 questions with complex answers mentioned previously.

The final category of issues includes QA pairs which are useless while still being correct.
These pairs do not add any faulty information but pollute the dataset with superfluous
information. An example for this category would be the question "Bei wie vielen Personen
zeigt die Behandlung mit Medikamenten nach 12 Wochen Erfolg?" (English: "In how many
people is the treatment with medication successful after 12 weeks?"). It was generated
based on a text discussing the efficacy of medication for depression but the LLM never
mentioned the word depression in the question or even in the answer. This makes it almost
impossible to match it to a related user question, as the question in isolation could refer to
any disease.

In addition, this category contains multiple cases where ChatGPT refers to individuals,
mainly the authors of the crawled articles, who ChatGPT was actually instructed to ignore.

Besides these three categories, the health experts also annotated some QA pairs to be
using overly complex language. This leads to answers being not accessible to the user.

In conclusion, the number of errors was relatively low but with a total of 4,300 QA pairs,
it was expected to generate some faulty data. The received feedback confirmed the quality
of our dataset and underpinned the importance of validating each QA pair instead of blindly
relying on ChatGPT’s results.

5.3. RQ3: Development of a Conversational Agent

In this section we explain the implementation details of our resulting CA including the
matching of QA pairs, traditional IR, disambiguation and our recommendation-system. We
have developed a pipeline to process an incoming question which employs a similarity-
based and an information retrieval approach. We begin this section by giving a brief
overview of our architecture, next describe our two approaches on QA, then continue the
main ideas behind our recommendation-system and finally describe the setup of our agent
in Dialogflow.

5.3.1. Architecture of a Conversational Agent

The architecture of the resulting agent can be seen in Figure 5.2. The agent consists of
three main components: A question analysis component, a response generation component,
and a recommendation component. The first two are explained in more detail in Section
5.3.2 and the recommendation component in Section 5.3.3.

36

5. Results

When the user initiates a conversation by asking a question, the agent starts with pre-
processing the input. First it will be classified as either health-related or -unrelated. If the
question is health-unrelated, the agent triggers a web search using the Bing API9 provided
by Microsoft.

Figure 5.2.: Flowchart showing conversation steps with conversational agent

Instead, if the question is health-related, the agent performs another preprocessing
step, which is not mentioned in Figure 5.2 for simplicity reasons: It checks whether
the topic of the incoming question is covered by any of the QA pairs in our dataset. This
is simply done, by verifying that there is any question with a similarity score of at least 40%.

If the question is health-related but the topic is not covered by any of our QA pairs,
the agent politely informs the user about the specific areas it can provide answers to.
Otherwise, the flow of events continues with retrieving the most similar question among
the collection of QA pairs. If a question with a similarity score of 90% or greater exists,
we call this a direct match. The corresponding answer will be returned, and the agent
continues with the recommendation component. If the most similar question has got a
similarity score greater than or equal to 70% and less than 90%, the system will perform a
disambiguation step by asking the user if the question is what the user was looking for. If

9Bing API: https://www.microsoft.com/en-us/bing/apis/bing-web-search-api

37

5. Results

the user responds with a "No", the system checks whether there is another question with a
similarity score in the range of 70% to 90% to perform the same disambiguation step a
second time.

If there is no such question or the user responds with "No" again, the third and last step of
the question analysis component is performed: Through traditional IR the CA tries to find a
passage in a document that contains an answer to the user’s query, more details in Section
5.3.2. If no such document can be found, the system engages the user to reformulate the
question. If either the disambiguation steps were successful or the traditional IR approach
could find a passage in a document that answers the user’s question with a confidence
score of 60% or more, the response will be output. In contrast to the scenario of a direct
match, in this case the agent will ask the user whether the provided answer was satisfying.
If not, the user is engaged to try again, similar to when the traditional IR approach fails.
However, if the CA manages to correctly answer the response, the agent continues with
the recommendation component.

The recommendation component simply suggests new questions which were labelled
as beginner questions during the construction of our dataset. The system continues
recommending new questions until the user does not show interest anymore, again more
details in Section 5.3.3.

5.3.2. Question Analysis Component

The agent employs a pipeline of two main components in order to answer an incoming
question: The first component is based on a question-similarity approach and the second
component uses traditional IR. The former is the agent’s main focus on answering a given
question while the latter can be considered a fallback strategy.

As previously outlined, the foundation of the agent’s QA skill is based on a question-
similarity approach, using the German BERT large paraphrase cosine10 model published
by Deutsche Telekom AG on HuggingFace. It is an auto-encoding transformer that was
fine-tuned on German input data. We use it to map our questions to a 1,024-dimensional
vector space, as explained in Chapter 2. The embedding for the question of each QA pair is
precomputed and stored in the database. As a database, we use Milvus11 which offers a
convenient platform as it can be run through Python script which can be included into our
existing Flask application. Additionally, it is highly efficient in computing vector operations.
As our dataset contains roughly 4,300 QA pairs, and we compare an incoming question
to each of our embedded questions, efficiently computing the similarity is crucial to our
application. As pointed out in Chapter 2, we decided to use cosine similarity, as it only
requires a single operation, the dot product, if we normalize all vectors in advance. These

10BERT-model for embeddings: https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-
cosine

11Milvus: https://milvus.io/

38

https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine
https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine
https://milvus.io/

5. Results

design decisions avoid any interruptions in the flow of conversation by quickly responding
to a user’s question. Furthermore, if the knowledge base of our agent should be expanded
in the future, retrieval of similar questions does not become a bottleneck that easily.

As the user asks a question, the system embeds the question and computes the cosine
similarity of the input question and all the stored questions. The cosine similarity will result
in a value in the range of -1 to 1. In this context, we often write about similarity in per-
centage as it is more intuitive. If we e.g. write about a similarity score of 90%, this would
mean that the cosine similarity returned the value 0.9. After all similarity scores were
computed, the agent retrieves the question with the highest score, the best match. We then
compare the corresponding similarity score to two different thresholds to find out if the best
match is sufficiently similar to be a direct match or otherwise to be used for disambiguation.

Deciding what threshold to apply, e.g. to determine a direct match, is a challenging task.
A softer threshold, e.g. 80% instead of 90% leads to more false positives, whereas a stricter
threshold results in more false negatives. False positives in this context refer to questions
that have a different semantic meaning than the user’s prompt but are interpreted as
identical. Vice versa, false negatives are questions that are labelled as not similar enough to
the user’s query although they have the same semantic meaning. As the perfect threshold
highly depends on many settings such as the use-case and the model used, it is crucial
to experiment with different values. Additionally, considering the idea behind the system
which is developed can help by identifying a suitable threshold: In the health domain it is
important to avoid any false information, which is the main reason for us to tend in the
direction of a stricter threshold, avoiding false answers. Additionally, the disambiguation
step in our pipeline allows to reduce the number of false positives.

After experimenting with different values, our final architecture applies a threshold
of 90% to identify a direct match. If the best match fulfills this threshold, the system
responds with the corresponding answer of the matched QA pair and continues with the
recommendation component explained in Section 5.3.3. Otherwise, the agent checks
whether a disambiguation step can be performed. Based on the same thoughts as dis-
cussed for the previous threshold, we came up with a threshold of 70% which needs to
be fulfilled for performing the disambiguation step. If the similarity score is in the range
of 70-90%, the agent asks whether the user maybe wanted to ask the question from the
best match. If the user denies this suggestion, the system checks if the second-best match
also achieves a similarity score greater than 70%. If that is the case, the disambiguation
step is repeated for the second question. If the user decides to accept either the first or
the second suggested question, the agent returns the corresponding answer. The answer
is followed by what we call a confirmation step, that is a question to confirm that the
user’s question was correctly answered. This helps with avoiding false positives, as the
concept of disambiguation and applying a softer threshold automatically leads to an in-
crease in false positives. If the user then confirms the answer, the agent continues with the

39

5. Results

recommendation component and otherwise the user is engaged to reformulate the question.

Any questions during the disambiguation step that were denied by the user will be added
to the blacklist, a list of QA pairs that the user was not interested in. This list helps with
avoiding suggesting a question twice to the user. If the user is engaged to rephrase a
question and the system performs a disambiguation step with the rephrased question, it
does not suggest a question from any QA pair on the blacklist.

Furthermore, if either the best match could not achieve a similarity score of 70% or
the questions suggested for disambiguation were denied by the user, a fallback method is
performed using traditional IR. As outlined in Chapter 2, traditional IR mainly differs from
similarity-based QA in the format of the information that is stored and used to answer a
user’s question. Thus, we set up a second database that contains raw documents about
various health topics. As we have already collected different articles for generating our
QA pairs, we reused the same data for populating the database which is then used for
traditional IR. In order to determine a response that is around three sentences long, we
again setup a small pipeline of multiple steps as illustrated in Figure 5.3.

Figure 5.3.: Pipeline to answer a question with traditional IR

The first step of the traditional IR pipeline selects three candidate articles using BM25.
We decided to use the Python library rank-bm2512 which provides multiple implementations
of BM25 all presented in a paper published by Trotman et al. [39]. We decided to use the
basic BM25 implementation as the results were satisfying.

We plan on using a transformer model to extract the answer from our article, which can
take up to a minute to process an entire article. Because we aim to respond in less than five
seconds, we performed the next two steps from our pipeline which select a small passage
from each of the three candidate articles. This drastically reduces the transformer’s
computing time. Firstly, we generate embeddings for every sentence within each article of
our database, using the same transformer as in the similarity-based approach. We then
select the best matching sentence for each of the three candidate articles, by comparing
the embedded question asked by the user with every sentence in one article. We repeat
this step for all three articles which results in a selection of three sentences, each from a
different article.

12rank-bm25: https://pypi.org/project/rank-bm25/

40

https://pypi.org/project/rank-bm25/

5. Results

In the next step of our pipeline, we retrieve a passage per article based on the matched
sentences. We simply choose the 300 characters that precede and the 300 characters that
follow our selected sentence in each article. This results in one text string consisting of
three parts: 300 characters before the matched sentence, the matched sentence and 300
characters after the matched sentence. If the sentence should be at the end or start of an
article which makes it impossible to either select 300 preceding or following characters,
we add more characters on the other end of the passage to still append 600 characters to
our selected sentence.

After we have retrieved one passage per article, we use a transformer model to extract
a response from each passage. We again decided to use a model provided by Deutsche
Telekom AG on HuggingFace13 which is designed for extracting answers given a question
and a text. The model uses the ELECTRA architecture and was fine-tuned on a German
QA dataset. For each of our passages the model returns a short answer, usually just a few
words within that passage and a confidence score indicating the level of confidence of an
answer being correct. Among those three answers, we select the answer with the highest
confidence score and apply a threshold of 60%, as any lower confidence score seems to
include incorrect answers.

If the best answer fulfills the threshold, we add the previous and the following sentence
to the answer extracted by ELECTRA and return this as the system’s response. Afterwards
the system’s confirmation step is executed. If the confidence score is below 60%, the user
is engaged to reformulate the question.

As previously explained, the similarity-based approach is the foundation of our solution
whereas the traditional IR component can be seen as a fallback method. If the similarity-
based approach fails, we try to find an answer using traditional IR. As we have already
crawled the documents used within our traditional IR component for generating the QA
pairs, we decided to implement our traditional IR pipeline.

5.3.3. Recommendation Component

After a user’s query was correctly answered, the agent engages the user in a conversation
by recommending new topics, illustrated as the recommendation component in Figure 5.2.
The idea is to tell the user a question similar to the previously answered question and ask
whether the user is interested in knowing the answer to that question. If the user shows
interest the answer is returned and the system recommends another question, again asking
whether the user is interested in getting to know the answer to the new question. This
process is repeated until the user expresses not being interested in any suggested question.

The main challenge for this component lies in developing a mechanism to choose a

13QA model: https://huggingface.co/deutsche-telekom/electra-base-de-squad2

41

https://huggingface.co/deutsche-telekom/electra-base-de-squad2

5. Results

question that might be interesting to the user, as the goal is to keep the user engaged
to teach them interesting new facts. Each conversation starts with the user asking the
agent a question. Only after the agent successfully responded, the recommendation compo-
nent becomes active. We assume that the user is most likely interested in the topic of the
initial question which started the conversation and therefore, recommend related questions.

In order to know the topic of a single question, we decided to create a three-level
taxonomy that assigns each QA pair to what we call a subsubtopic and each subsubtopic is
then assigned to a subtopic which again is assigned to a topic. Therefore, the subsubtopics
represent the bottom layer, the leaf-nodes, and the topics represent the top layer of
the taxonomy. Furthermore, the subsubtopics represent each name of the articles that
were crawled to construct the dataset whilst. When crawling the PDF files, we manually
assigned them to a subsubtopic, so each generated QA pair could be linked to a subsubtopic.
The topics in our taxonomy were the three fields covered by our source documents:
cardiovascular diseases, mental illnesses and PoTS.

Next, we added subtopics to differentiate our topics in a more granular way and at
the same time group similar subsubtopics together in one category. For cardiovascular
diseases we used the categories presented by Berufsverband Deutscher Internistinnen und
Internisten14 as a first draft. We further refined the presented categories in communication
with a physician. For the subtopics on mental illnesses, we created the taxonomy together
with some health experts. Additionally, for PoTS, the last topic covered by our QA pairs, we
decided to not create a taxonomy, as we only generated roughly 100 QA pairs on this topic
which do not need to be further categorized.

Figure 5.4 shows the resulting taxonomy for the topic mental illnesses to illustrate the
three levels that the taxonomy employs. Furthermore, the taxonomy for cardiovascular
diseases can be found in the appendix A.1. However, both taxonomies are designed in
German, as the source documents and the agent itself use German.

After the taxonomy was successfully created and approved by a team of health experts,
we could assign each QA pair to a subtopic and topic as the subsubtopic was already
assigned when generating the QA pairs based on the source document. The same could be
done to the articles and documents that we stored in order to perform traditional IR.

The taxonomy allows the agent to suggest a question based on the subtopic the user
showed interest in. The subtopic is simply determined by either extracting it from the QA
pair which was used to answer the user’s question or if the traditional IR was performed,
we extract the subtopic from the article used to create the system’s response.

Our QA pairs served as a pool of questions which can be potentially recommended to
the user. However, we cannot simply recommend any question to the user that covers the
same subtopic, as our QA pairs also consist of very specific or complicated questions. In

14Subtopics for cardiovascular diseases: https://www.internisten-im-netz.de/fachgebiete/herz-
kreislauf/herz-kreislauf-erkrankungen.html

42

https://www.internisten-im-netz.de/fachgebiete/herz-kreislauf/herz-kreislauf-erkrankungen.html
https://www.internisten-im-netz.de/fachgebiete/herz-kreislauf/herz-kreislauf-erkrankungen.html

5. Results

Figure 5.4.: Taxonomy for mental illnesses used by recommendation component

order to engage the user in a conversation it seems reasonable to recommend what we
labelled a beginner question, i.e. a question which is understood by anyone and applicable
to most users. For instance, the question "What can I do about high blood pressure if I
have diabetes?" would only be interesting to a specific group of users who have diabetes
because of the conditional sentence. As we noticed that short questions often follow the
pattern "What is ...?" or "What are the causes of ...?", we labelled each QA pair which is
less than eight words long as suitable for recommendations.

This simple approach achieved promising results, as it labelled long and complicated
questions as intermediate. The only downside of this method is that it leads to labelling
questions which could be suitable beginner questions as intermediate. This is due to
the fact that eight words is a very strict threshold. For instance, the question "Welche
Symptome können bei zu geringer Salzkonzentration im Blut auftreten?" (English: "What
symptoms can occur if the salt concentration in the blood is too low?") is a question that
could catch the user’s interest because it is simple and a topic which affects many people.
As this question exceeds the threshold of seven words, this is an example from our QA
pairs which was labelled as intermediate.

Since with a dataset consisting of 4,300 QA pairs, we can afford to miss a few possi-
ble beginner questions, this easy-to-implement approach highly improves the quality of
recommended questions. In total 1,245 questions were labelled as beginner questions
with the fewest beginner questions from the subtopic "Persönlichkeitsstörungen" (English:
"Personality disorders"), that is five questions. However, for the two subtopics which are
covered by the most of our source documents, i.e. "Belastungs- und Angststörungen"
(English: "Stress and anxiety disorders") and "Bluthochdruck und Blutdruckstörungen"
(English: "High blood pressure and blood pressure disorders"), we labelled 252 and 229

43

5. Results

respectively as beginner questions.

Our final recommendation system then recommends new questions to the user based
on the identified subtopic using the questions labelled as beginner questions. The agent
remembers which questions have already been answered so that they are not recommended
again. This includes both the question of the QA pair that was used to answer the user’s
question, as well as questions that were answered in the course of the recommendations.
If a user is continuously accepting the suggested questions, it is possible that the agent
runs out of recommendation questions. In that case, the agent randomly chooses another
subtopic from within the same topic and continues recommending questions only from that
subtopic until it runs out of questions again.

5.3.4. Dialogflow

The previous sections introduced the algorithms and techniques performed at different
steps of the flowchart. For allowing a smooth conversation which can map the user’s
utterances to specific scenarios in our flowchart, we used Dialogflow and its intents. In the
following, we will discuss the intents implemented by our Dialogflow agent. An overview
of all existing intents is given in Table 5.1. We will start with presenting all the intents
which are not used for answering a health question and then finish with the intents that
are necessary for our QA pipeline.

The first intent is called help and simply should give a short introduction on how to
interact with our agent. The next intent, web.search, is triggered whenever a question
seems to not be related to any health topic. It can be either triggered if the agent identifies
the incoming prompt as an open-domain question, e.g. "Who is Barack Obama?", or via
a Dialogflow event, i.e. a method to trigger another intent from within the process of
handling an initially matched intent.

The intent that will be matched whenever the user asks a new health-related question, is
the health.search intent. It is trained with questions on different health-related topics. The
linked webhook service employs our question-analysis component and decides whether
the request can be solved through a direct match, a disambiguation step, traditional IR or
cannot be solved at all.

The health.disambiguation, health.confirmation and health.recommendation intents are
triggered by a user’s "yes" or "no" and depend on so called input contexts. Input contexts
are a feature provided by Dialogflow to correctly assign any user utterance to an intent. In
this case they are important as these three intents defined the same trigger words. Each of
these three intents is used whenever the system previously asked a question and expects a
"yes" or "no" as an answer from the user. For health.disambiguation, the system suggested
a disambiguation question which the user can accept or deny, for health.confirmation
the system wants to confirm whether it answered the user’s question correctly and for
health.recommendation the system asked whether the user is interested in a specific

44

5. Results

question which also needs to be answered with a "yes" or a "no".
Therefore, if one of these questions was asked by the agent, the system internally sets a

context which uniquely identifies one of the three scenarios. Each of the three intents then
requires its unique context to be triggered which avoids any ambiguities whenever a user
responds with a "yes" or a "no" as the previously set context determines which intent needs
to be triggered. For instance, if the health.search intent retrieved a direct match and thus,
aims to continue with the recommendation component, it would set a recommendation-
context. Additionally, it would output the recommended question after answering the initial
question. The user receives a suggested question, and the recommendation-context is set.
Any "yes" or "no" will then trigger the health.recommendation intent.

Furthermore, the contexts are used to add relevant information for the flow of the con-
versation. In the example with the recommendation-context, this could be the index of the
previously answered question to avoid recommending this question again. Additionally, the
lifespans of the contexts used for this purpose are always set to one which makes them
disappear after the next input provided by the user. This is important as the three intents
use the same trigger words and thus could interfere with each other if multiple of these
input contexts are set.

The intent health.traditional is only triggered via events either when the system is han-
dling a new question and could not find a suitable QA pair or if the disambiguation step
was unsuccessful. If the system found an answer through traditional IR, it responds with
the retrieved passage and asks for confirmation including setting the confirmation context.
Otherwise, it engages the user to reformulate the question. If that is the case, in the
background all previously suggested questions are preserved in a context called prev_conv
to avoid suggesting them again. For example, if the user asks a question and the system
could not find a direct match, it might find two questions suitable for our disambiguation
step. If the user denies the first disambiguation question and afterwards the second one,
the system tries to use traditional IR. If traditional IR was unsuccessful, it creates the
prev_conv-context to store the indices of both questions which were denied by the user.
If the user now reformulates the question, our agent will not suggest the same questions
again, as the user was not interested in them. The same context is set if the user responds
with a "no" in the confirmation step.

Furthermore, the agent consists of the health.source intent which can be triggered
anytime that the system returned a response. It provides information about the source that
was used to either generate the corresponding QA pair or if traditional IR was performed,
the source article of the extracted passage. The process of retrieving the source information
is straightforward as it is linked to each QA pair and article in our databases. Therefore,
whenever the agent retrieves a QA pair or an article to answer a question, it extracts the
source information and stores it in a context that is called source. This context is required
to be set in order to trigger the health.source intent.

45

5. Results

Table 5.1.: Dialogflow agent intents and their corresponding user inputs and agent re-
sponses

Intent name Example input Agent response

help How does this work? Provides a short introduction on
how to interact with the agent.

web.search Who is Barack Obama? Triggers when an open-domain
question is asked or via an event;
provides an answer not related
to health.

health.search What are the symptoms of flu? Matches health-related
questions and suggests a
recommendation-question or
performs IR.

health.recom-
mendation

Yes, I’m interested.
No, I’m not interested.

Provides the corresponding an-
swer to the recommended ques-
tion or acknowledges disinterest.

health.disam-
biguation

Yes, I’m interested.
No, I’m not interested.

Provides the corresponding an-
swer to the disambiguation ques-
tion or continues with traditional
IR.

health.confir-
mation

Yes, my question was answered.
No, my question was not an-
swered.

Asks for confirmation if the
agent’s response answered the
user’s question.

health.traditional (Triggered via events) Provides an answer from tradi-
tional IR or asks the user to re-
formulate the question.

health.source Where did this information
come from?

Provides source information for
the QA pair or the article used in
the response.

5.4. RQ4: Evaluation of CA

As outlined in Chapter 4, the evaluation is divided into an automatic evaluation and test
user evaluation. In this section we present results from both methods, addressing the
research question "What evaluation methods can be used to assess the performance and
effectiveness of the developed system?".

5.4.1. Automatic Evaluation

For the automatic evaluation we randomly selected 200 QA pairs from our dataset and
prompted GPT-3.5-Turbo to reformulate our selected questions. As we are sending a

46

5. Results

request to the API provided by OpenAI, we need to define one message array per prompt,
as outlined in Section 5.2.2.

The first message to ChatGPT contains a short system instruction to reformulate any
incoming questions. Additionally, we provide two few-shot examples, each example con-
sisting of one question sent by the user and a simulated response from the system which
rephrases the question accordingly. The following is an example of what a final message
sent to ChatGPT looked like:

1 {
2 "role": "system",
3 "content": "Du erhälst eine Frage und du musst die Frage umformulieren.",

4 },
5 {
6 "role": "user",
7 "content": "Was kann ein Grund für einen zu niedrigen Blutdruck bei ä

lteren Menschen sein?",
8 },
9 {

10 "role": "assistant",
11 "content": "Warum könnten ältere Menschen einen niedrigen Blutdruck

haben?",
12 },
13 {
14 "role": "user",
15 "content": "Was ist der FAST-Test?"
16 },
17 {
18 "role": "assistant",
19 "content": "Wie lässt sich der FAST-Test beschreiben?",
20 },
21 {
22 "role": "user",
23 "content": "Wie stellt der Arzt eine KHK fest?"
24 }

At the end of this array, the prompt is given which simply consists of the question
that we aim to rephrase. This message is what we consider the basic prompt, as the
model is not instructed to rewrite the question in a specific style. However, we adjusted
the hyperparameters aiming to encourage more creative formulations. The following
parameters were chosen:

• temperature of 2

47

5. Results

• maximum length of 4,000

• "top p" of 1

• frequency and presence penalty of 2

• no custom stop sequences

As mentioned previously, the temperature and top p impact the randomness for the
model’s output with higher values leading to more random outputs [37]. Large values for
frequency and presence penalty engage the model to use more creative words, penalizing
the reuse of words already seen. As we aim to assess the efficacy of our similarity-based
approach, we decided to maximize all those four values. This leads to the most random
and creative reformulations achievable with GPT-3.5-Turbo.

The second sample of 200 questions was then send to ChatGPT with the instruction to
rewrite the questions from the first-person perspective of an elderly person. Similar to the
basic prompt, we added a few-shot example and at the end of the message we submitted
the question to be rewritten. The following is an example of the final message sent to
ChatGPT:

1 {
2 "role": "system",
3 "content": "Du redest wie ein alter Mensch. Deine Aufgabe ist, es eine

gegebene Frage aus der Ich-Perspektive zu wiederholen.",
4 },
5 {
6 "role": "user",
7 "content": "Was kann ein Grund für einen zu niedrigen Blutdruck bei ä

lteren Menschen sein?",
8 },
9 {

10 "role": "assistant",
11 "content": "Woran kann es liegen, dass ich als älterer Mensch einen zu

niedrigen Blutdruck habe?",
12 },
13 {
14 "role": "user",
15 "content": "Wie unterscheiden sich primäre und sekundäre Krampfadern?"
16 }

The aim with the second sample was to test the matching performance for the target user
group for the ALPHA smartwatch which mainly is used by elderly people. Furthermore, we
noticed that all the stored QA pairs are using an impersonal perspective. As some users
might ask questions from their own perspective, we were interested in evaluating how well

48

5. Results

our agent can match these questions and thus instructed the system to use the first-person
perspective. Additionally, with the first prompt we were interested in generating creative
reformulations. With this prompt, we focus on the system instruction and therefore we
used the default settings for the hyperparameters:

• temperature of 0.7

• maximum length of 4,000

• "top p" of 0.95

• frequency and presence penalty of 0

• no custom stop sequences

For our evaluation we identified five scenarios that could occur when matching a refor-
mulated question with one of our QA pairs. To avoid confusion, we will refer to the original
question as Qoriginal, the rephrased question as Qrephrased, and the question matched by the
agent with Qmatch.

The three first scenarios are considered correct matches, characterized by Qrephrased and
Qmatch being identical. The first scenario requires Qrephrased to be at least 90% similar to
Qmatch, previously defined as a direct match. The second scenario involves a similarity
score between Qrephrased and Qmatch of less than 90% but more than 70%, considered a
disambiguation match. The third scenario, which never occurred in our results but is
mentioned for completeness, involves Qrephrased and Qmatch being the same but not meeting
the disambiguation threshold.

The last two scenarios are what we defined as incorrect matches, meaning Qoriginal and
Qmatch are not the same. The fourth scenario occurs if Qmatch is semantically the same as
Qoriginal, indicating that even though the match was incorrect, the question would still be
answered correctly. The fifth scenario occurs if Qmatch is different in meaning from Qoriginal,
marking a clear mistake.

To classify whether an incorrect match falls under the fourth of fifth scenario, we re-
viewed each incorrect match. We were strict in our evaluation, only considering questions
semantically the same if individual words were replaced with synonyms or the sentence
structure was slightly modified.

The results of the automatic evaluation can be seen in Table 5.2 and will be further
discussed in the following.

For the basic prompt, the distribution of match types indicates that most questions (70%)
resulted in direct matches, where the original and rephrased questions achieved at least
90% similarity. Disambiguation matches accounted for 15% of the outcomes. Semantically
correct matches, representing cases where the matched question did not exactly match
the original but was semantically equivalent, comprised 12%. Incorrect matches, where
the matched question diverged in meaning from the original, were the least common,
constituting only 4%.

49

5. Results

correct match incorrect match

direct
match

disambiguation
match

semantically
correct match

incorrect
match

basic prompt 139 / 0.70 30 / 0.15 23 / 0.12 8 / 0.04
old person prompt 137 / 0.69 43 / 0.22 18 / 0.09 2 / 0.01

Table 5.2.: Automatic performance evaluation of the conversational agent: Distribution and
frequency of match types based on similarity score for a random sample of 200
questions

For the old person prompt, the outcomes are even more favorable: In total 91% of the
questions were correctly matched compared to 85% for the basic prompt. However, the
old person prompt achieved less direct matches but 7% more disambiguation matches.
Similarly, the old person prompt resulted in fewer incorrect matches compared to the basic
prompt, with only 1% of the questions being matched to a question that differs in meaning
from the original, as opposed to 4%.

The results indicate that the agent is proficient in recognizing similar questions, but there
are noteworthy observations regarding the incorrect matches. For instance, in some cases
the incorrectly matched question is still closely related to the original question that was
reformulated. For example, we found the following incorrect match within our 200 samples
from the basic prompt: The original question was "Welche kleinen Aktivitäten können bei
Depressionen helfen?" (English: "What small activities can help with depression?") and the
matched question was "Welche Möglichkeiten gibt es zur Behandlung von Depressionen?"
(English: "What options are there for treating depression?"). In this case, the answer
provided could still be relevant to the user’s query, as the agent might include small
activities among the treatment options for depression.

Moreover, the rephrasing process for one question, influenced by the selection of hyperpa-
rameters, was overly creative. The question "Welches Blutfett steigt bei der familiären Hy-
percholesterinämie an?" (English: "Which blood fat rises in familial hypercholesterolemia?")
was changed to "Bei welcher Erkrankung steigt das Blutfett aufgrund von Genmutationen
an?" (English: "In which disease does blood fat increase due to genetic mutations?") which
removed the name of the disease which the question is interested in. This rephrasing
makes accurate matching challenging, yet the error might not necessarily lie with the agent.

These findings indicate that the incorrect matches are not as problematic as they first
appear. However, there are also some incorrect matches which highlight challenges of the
agent’s matching performance, for example the handling of abbreviations. The collection
of QA pairs is very inconsistent with the use of abbreviations, depending on the disease
being covered. While abbreviations are employed for certain diseases, others that could
also be abbreviated are not. Moreover, within the dataset, there are instances where one
QA pair for a specific disease might use the abbreviation, whereas another pair for the

50

5. Results

same disease does not.
This inconsistency poses difficulties for accurate question matching as shown by one

example from the incorrect match of the old person prompt, illustrated in Figure 5.5. The
first question is the original question from our QA pairs collection, it is about coronary
artery disease (CHD) and uses the abbreviation. In contrast, the second question which
was generated by ChatGPT uses the long version. Thus, the agent incorrectly matched
it to a question not using the abbreviation, as seen in the third question. Despite the
semantic similarity of the original and matched questions, this instance was classified as a
mismatch because we only allowed minimal variations to count an incorrect match as a
semantically correct match. Nevertheless, this example effectively addresses a weakness
of our similarity-based approach.

Figure 5.5.: Example for a question being randomly selected from the collection of QA
pairs (1), reformulated by ChatGPT (2) and incorrectly matched to another
question from the collection (3)

Furthermore, the old person prompt achieved 7% more disambiguation matches than
the basic prompt. As we instructed ChatGPT to rewrite the questions from the first-person
perspective, we assume this lowered the similarity score for matched question and led to
less frequently meeting the threshold for the direct match. Regardless of whether this
assumption, further investigation showed that the first-person perspective has a slight
but relevant impact on the overall similarity score. Therefore, this could be addressed in
future improvements by preprocessing any input questions to remove any words related to
first-person perspective.

Additionally, 12% of the questions using the basic prompt and 9% of the questions using
the old person prompt were matched to a semantically correct question. As a reminder,
this means that the agent’s matched question only shows slight deviations compared to
the original question, such as individual words that have been exchanged or a different
sentence structure.

Therefore, these results indicate the occurrences of duplicate questions in the con-
structed dataset. While having a large amount of QA pairs increases the chances of
matching a user’s question, our goal is to minimize redundancy in the dataset as the
following example should illustrate:

Consider a user asking an ambiguous question, leading to the agent performing a

51

5. Results

disambiguation step. Further assume that at least two questions meet the disambiguation
threshold: the most similar question does not reflect what the user is interested but the
second most similar question does. As the disambiguation step presents both, the user’s
question can be answered. In a dataset polluted with duplicate questions, there is a risk
that the irrelevant question is contained in multiple times in the dataset just phrased
differently. This could lead to the two most similar questions being different variants of
the irrelevant question. As only the two most similar questions will be suggested, the
user would not see the relevant question. This scenario could negatively impact the user
experience as the system could not provide a response.

5.4.2. Test User Evaluation

The second part of the evaluation was a qualitative feedback from a group of 10 test
users who interacted with our CA for the first time. Therefore, we created a survey which
instructed the participants to ask our agent any questions related to the three topics
cardiovascular diseases, mental illnesses, and PoTS. After this brief introduction, they had
five minutes to interact with the agent without any further details while we were observing
their conversation with the agent. When the five minutes were over, we provided a more
detailed instruction about the agent’s functionalities. This often included explaining differ-
ent features that the user has not noticed yet or an explanation of the type of questions our
agent is able to answer, e.g. its inability to handle coreferences.

Afterwards, the user should answer questions capturing the user experience, system’s
usability, the relevance and accuracy of generated responses and the agent’s effectiveness
in engaging the user to learn more. At the end of the survey, we collected demographic
information, including age, technical knowledge, and familiarity with medical topics. The
list of questions is provided in the appendix A.1.

Based on the answers, we knew that the majority of the participants had little knowledge
on medical topics but considered themselves as intermediate in technical topics. The
average age of the test group was 26.1 years.

Furthermore, it is important to note that the users interacted with a chatbot version of
our agent instead of a voice-interface. This was due to the fact that by the time when the
participants evaluated the agent, the voice-based version had not been deployed yet.

The overall feedback was positive as shown by the answers to the initial question asking
how the users would rate their experience. However, most answers also mentioned difficul-
ties when interacting with our agent, which we will now discuss in detail.

The first five minutes of each test already provided deeper insights in possible expecta-
tions and misunderstandings users might experience when interacting with our agent for
the first time. As we did not fully explain the capabilities and limitations of our agent, we
could analyze the user’s expectations through observing the participants’ questions.

52

5. Results

The most common misunderstanding was that users interacted with our agent as if it was
an LLM, such as ChatGPT, likely because it is the most-used CA. This was noted whenever
users asked a question which coreferenced previous messages. Additionally, in some cases
users responded with "no" to a disambiguation question asked by the agent and within
the same message asked a new question to the agent. This did not result in the outcome
the user expected, as the agent would only register the "no" response and ignore the new
question. This is due to the agent matching the "no"-entity to the health.disambiguation
intent which engages the user to rephrase the question. However, to answer any question,
the health.search intent must be triggered.

Another common misunderstanding was the assumption that the agent could function
like a doctor. This means participants explained some fictional symptoms and asked the
agent for a diagnose. As the agent is not capable of diagnosing any symptoms, the users
noticed after a few questions that this is not possible.

Discovering any misunderstandings or ambiguities was helpful as it underscores the
importance of communicating the agent’s capabilities to future users of the ALPHA smart-
watch.

Besides these misunderstandings about the agent’s functionality, we now present differ-
ent scenarios and questions where the agent did not perform as expected.

Moving on to one of these scenarios, we found that some users were unsure what to
begin asking questions about. Therefore, they asked questions on higher-level topics, such
as "Which cardiovascular diseases are there?". This was challenging for the agent, as the
dataset of QA pairs contained questions on specific diseases rather than the higher-level
topic "cardiovascular diseases". This is due to none of the crawled articles used to generate
the QA pairs covered the topic "cardiovascular diseases". To address this problem, a
solution could be to either manually add a few QA pairs about the top-level topics from our
taxonomy or finding a suitable article covering these topics to generate new QA pairs on
these topics.

Furthermore, in one case the agent suggested a wrong question in the disambiguation
step, even after the user was rephrasing the input. We investigated the reason for this
problem and discovered that the database contained a QA pair which would have answered
the question, but it was worded strangely. After further research, we realized the source
article used the same wording and therefore, ChatGPT must have copied it. Although the
strangely phrased question met the threshold to be selected for a disambiguation step, the
database contained nearly 10 other questions that were more similar. Thus, they were
suggested instead.

This problem could be solved by implementing the feedback provided in the validation
step of the QA generation pipeline, which we have not retrieved by the time of the evalua-

53

5. Results

tion. Additionally, it is important to highlight that this incident occurred only once. Usually,
if a question could not be answered correctly, this was due to no QA pair existing in our
dataset that covered the topic.

Besides challenges concerning the matching performance, we have noticed different
unexpected behaviors by the participants. The first thing that we noticed was no user
responded with "no" to the disambiguation or confirmation question asked by our agent. If
users were not satisfied with any suggested question, they immediately rephrased their
question instead of responding with "no". This behavior led to the agent never suggesting
a second disambiguation question. Also the feature designed to avoid suggesting disam-
biguation questions a second time after a user reformulates their question could never be
explored, as no disambiguation questions were denied and thus not added to the blacklist.

Another observation related to unexpected user behavior was that some participants did
not engage with any questions asked by the agent. This behavior however might be cause
by the setup of our evaluation, as we used a text-based instead of a voice-based agent.
In a chatbot environment, it is easier to overlook or ignore any information that seems
irrelevant. Conversely, in a voice-based output, the information that is best remembered
usually is the last sentence from the response which would be the question asked by
our agent. Thus, we would need to further investigate the interaction of users with a
voice-based version of our agent.

Furthermore, we found that the traditional IR component of our agent never answered
any question. Mostly, this was due to the similarity-based approach finding a response first.
However, there were cases where the traditional IR component was triggered but failed to
return a suitable response. Further investigation showed that the traditional IR component
struggled to retrieve the article which contains the answer to a given question. Therefore,
the three retrieved articles did not contain the responses which made it impossible for the
transformer model to extract a correct answer from a given passage. This model calculates
a confidence score to assess how well the extracted response answers the input question.
Since the agent requires the confidence score to be at least 60% and none of the extracted
answers met this threshold, the system never returned any answer.

Since the traditional IR approach was only a fallback method, the overall performance
and user experience did not suffer from these failures. However, in the future this compo-
nent could be further improved.

The feedback helped us to identify some limitations and challenges of our agent. Despite
the issues mentioned, once the participants understood the concept behind our agent, the
experiences were mostly positive. Additionally, nine out of 10 participants stated in the
survey that they appreciated the recommendation questions.

However, it is important to acknowledge that the participants did not align perfectly with
the target group of the ALPHA smartwatch, which is mostly used by elderly and thus less

54

5. Results

technical skilled users. For instance, it is unlikely that older individuals expect this agent
to be like ChatGPT.

In conclusion, the agent reveals some limitations which could be solved once the feedback
from the health experts is integrated into the dataset. Despite these challenges, the
feedback was generally positive, indicating a promising direction for future enhancements.
These positive results underscore the potential of the agent to bridge the gap between
medical professional language and consumer language by employing CAs.

However, further evaluations need to be performed, especially with a group of older
people which might expose different challenges when interacting with our agent.

55

6. Discussion

This thesis focuses on exploring the design and implementation of a CA that answers con-
sumer questions to health-related topics. This objective was answered in two steps. Firstly,
generating a dataset of QA pairs that was validated by a group of health professionals.
Secondly, the CA was developed, enabling a pipeline of multiple steps to provide suitable
answers to any incoming inquiries. Afterwards, the agent was evaluated employing two
different strategies. In this chapter, we discuss the feedback from the health professionals
and the results from both evaluation strategies to critically assess our approach.

6.1. Key Findings

The constructed dataset builds the foundation of our final agent, as high quality QA
pairs result in more accurate matching. Based on the feedback provided by the health
professionals, the dataset generally shows a high quality apart from a few minor errors.
We noticed that the quality heavily relies on the provided input context. In many cases,
errors in the data were traced back to low-quality input contexts provided to ChatGPT. As
the model could not identify any useful information, it simply hallucinated. Additionally,
sometimes the input context provided the necessary details to create a correct answer, but
the model ignored relevant information. This occurred either because the model failed to
identify what was relevant or because we instructed the LLM to shorten an answer that
exceeded our 25 words limit.

It’s important to note, however, that such errors were rare and mainly confirmed our
decision to perform a validation step in our pipeline of creating QA pairs instead of re-
lying solely on an LLM. Thus, we could remove or correct any of the misleading information.

Overall, the similarity-based approach of our CA was efficient and accurate, as both
evaluation strategies confirmed. The matching performance in our automatic evaluation
exceeded expectations: Only 4% of the questions using a basic prompt and 1% using the old
person prompt could not be answered correctly. This finding proved that the embeddings
computed by our transformer could effectively capture the semantic meaning of questions.
Additionally, the decision to include a disambiguation step in our QA pipeline was also
beneficial: For the old person prompt, the agent successfully matched 22% of all questions
by performing a disambiguation step. Without this feature, the agent would have instructed
the user to rephrase their question and lowering the user experience drastically.

Furthermore, when evaluating with the test users, the agent could answer the majority
of questions if two conditions were met: The user asked a question on a topic that was

56

6. Discussion

covered, and the question was of a general nature and e.g., not asking for a diagnose with
a set of given symptoms.

Besides the agent being able to answer most questions, the recommendation component
successfully engaged the participants of the evaluation in a conversation. In our survey,
nine out of 10 users reported positive experiences with the recommended questions.
Although the approach was fairly simple, it seemed to be effective. The combination of
selecting beginner questions by the length of the sentence and utilizing a small taxonomy
to suggest related questions created a seamless conversation.

6.2. Challenges

Despite the agent’s success in answering health-related questions and generally satisfying
user experiences, it faces different challenges and limitations which we will highlight in
this section.

One issue is that the dataset contains some QA pairs with very similar semantic meaning.
Having many unnecessary QA pairs in our database makes it more likely that an irrelevant
question matches with the input question. Moreover, many similar QA pairs reduce the
effectiveness of the disambiguation step. For instance, if a user asks an ambiguous question,
the agent could retrieve two matches: the first match is incorrect but the second would
answer the user’s question. The disambiguation step would suggest both and thus, could
answer the ambiguous question. However, if the question from the incorrect match is
contained in the dataset multiple times but slightly different phrased, the disambiguation
step might rank the correct question lower and not present it to the user. Additionally,
considering that the dataset might grow and include millions of QA pairs, it is not feasible
to store a single question multiple times but differently phrased.

This highlights a specific trade-off that we encountered: On the one hand, we aim to
generate a vast amount of QA pairs as this increases the chances of finding a match for
a given question. On the other hand, we avoid generating too many QA pairs as this
enhances the probability of semantically identical questions leading to the previously
outlined difficulties.

Some duplicate QA pairs could have been caused by using multiple articles covering
the same topic to generate the dataset. As outlined when explaining our QA pair gen-
eration pipeline, the pipeline has already removed duplicate questions. However, the
similarity-threshold was quite strict because we preferred having duplicate QA pairs over
removing unique pairs. To improve the dataset’s quality, it might be useful to choose a
softer threshold. Alternatively, the system could start with a strict threshold and lower it
for subsequent articles covering topics that were already used. This strategy might be a
compromise between keeping unique questions while removing duplicates.

Besides limitations concerning the constructed dataset, the matching performance of

57

6. Discussion

the agent faced some difficulties. The results show that the perspective used when asking
a question had an impact on the similarity score. When a user asked a question using
the impersonal view, it received a higher similarity score compared to the same question
asked from a first-person perspective. This is due to most of the QA pairs being written
impersonally. Although this effect does not significantly impact the similarity score, it could
reduce the overall user experience, as for instance the matched question more frequently
triggers the disambiguation step instead of a direct match.

This could be improved by adding a preprocessing step before performing the similarity-
search. This step would involve removing any occurrences of words related to the first-
person perspective from the user’s question, such as "I" or "me".

Another challenge regarding the matching performance involves the use of acronyms.
For instance, if all QA pairs mention a specific disease by its full name, while the user’s
question contains its acronym, it becomes almost impossible to correctly match the question.
Addressing this issue could also involve a preprocessing step that replaces any occurrences
of acronyms in the user’s question with their full form. However, this approach might
become overly complex as the dataset expands and the system needs to maintain an
exhaustive list of acronyms.

Alternatively, the dataset could contain two versions for each QA pair that contains a
disease that also has a short from: The written out and the abbreviated version. This
ensures that no matter which version the user is using, there is a QA pair to match it with.
Yet, also this approach has its downsides as it might lead to pollution of the dataset.

Furthermore, although the similarity-based approach led to satisfying results, the tradi-
tional IR component was rather ineffective. During the evaluation by the test users, this
component has never returned any response because the confidence score of the extracted
responses did not reach the required threshold. Further analysis revealed that this compo-
nent mainly struggled to identify the article that contains the answer to a question, rather
than in extracting the answer from a correctly retrieved article. As the presented solutions
from literature showed, it might be beneficial to extract the focus and type of a question to
retrieve candidate articles rather than the entire question.

However, as traditional IR was intended to be a fallback method and most of the cases
the similarity-based approach was able to find an answer, the system’s overall performance
was not impacted. Still, in the future it could be advantageous to implement a hybrid
solution, making the agent more robust.

Another critical aspect to discuss is that the evaluation was not fully representative for
the target group of the ALPHA smartwatch. The test users were on average 26.1 years
old and mostly state to have a technical background, while the main users of ALPHA are
elderly people and thus, they are less familiar with technology. Moreover, the evaluation
was limited to just 10 test users, which is insufficient to draw meaningful conclusions on
the agent. However, the evaluation intended to gather initial feedback which can be used

58

6. Discussion

to determine the most relevant challenges exposed by the agent.

59

7. Conclusion

7.1. Summary

This thesis addressed the design and implementation of a voice-based CA for responding
to CHQs. Therefore, the thesis focused on two main pillars: Firstly, the construction of a
dataset which could then be used by the second pillar, the development of the voice-based
agent. The main objective was to improve accessibility to health information, especially for
people less familiar with technology.

The process of answering this central question was guided by four research questions,
starting with analyzing existing methods on answering CHQs. This review identified
three main approaches: traditional IR, knowledge graphs and entailment-/similarity-based
approaches. Additionally, when answering CHQs, literature showed that one main challenge
is the gap between medical jargon and consumer language. A similarity-based approach
was chosen for its ability to bridge this gap: The numerous QA pairs stored simply employ
a consumer-friendly language.

The decision to use a similarity-based approach required constructing a suitable dataset
as a lack of high quality QA datasets in the medical domain was noted. Therefore, address-
ing the second research question, a dataset of QA pairs was constructed through a pipeline
of four central steps: Collecting data from multiple sources, sending the collected data to
GPT-3.5-Turbo to generate the QA pairs, adding useful metadata to each pair and validating
the final dataset. The validation was performed by different health experts who evaluated
the text quality as well as the correctness of each QA pair.

The third research question focused on the development of a CA that employs a QA
pipeline to respond to a given question. This pipeline includes several components: a
preprocessing component, a similarity-based approach, a disambiguation step, a traditional
IR approach and a recommendation component to engage the user to learn more.

After the dataset was created and the agent developed, the final research question
addressed the evaluation of the system. The evaluation was performed in two steps: First
focusing on the matching performance and second using a group of test users to assess the
conversational features. The findings showed that the agent was effective at answering
CHQs as stated by the test users. Furthermore, the agent successfully handled ambiguities
and engaged users to learn new topics.

60

7. Conclusion

In conclusion, the results of this thesis demonstrate that leveraging an LLM for construct-
ing a dataset of QA pairs is a sufficient approach. Moreover, this dataset could be used to
develop an agent that successfully answers CHQs, underscoring the value of CAs in the
consumer health domain to improve accessibility of health information.

7.2. Future Work

As this thesis has contributed a new method for creating an agent in the consumer health
domain, several new questions and possibilities arise for future work. First of all, the
agent’s hybrid approach could be further enhanced by improving the traditional IR com-
ponent. Rather than working as a fallback, this method could work collaboratively with
the similarity-based component, where the agent always considers both approaches when
creating a response.

Furthermore, future work could involve the handling of coreferences throughout the
conversation with a user. This involves maintaining awareness of the topic being discussed,
even if it is not directly mentioned in follow-up questions. Since many of the test users al-
ready anticipated this behavior, implementing it could improve the overall user experience.

Investigating more representative evaluation methods presents another interesting di-
rection. For instance, the TREC2017 dataset for evaluating English consumer health
questions could be translated into German to evaluate the agent’s performance and to
establish a benchmark for comparing the performance of German-speaking medical agents.
Furthermore, an evaluation with a larger and more diverse group of test users would lead
to more conclusive results.

Additionally, adding a component to the system that remembers questions which were
not successfully matched could give valuable insights. This would not only be interesting
for the analysis of weaknesses of the agent but also these unmatched questions could be
used for adding new topics to the agent’s knowledge base. This feature could iteratively
expand the agent’s coverage of health-related topics.

61

A. Appendix

Figure A.1.: Taxonomy for cardiovascular diseases used by recommendation component

62

A. Appendix

Type of Question Question

User Experience and Satisfaction How would you rate your overall experience with the agent?
What did you like most when interacting with the agent?
What did you like least when interacting with the agent?
Would you use the agent again? If yes, in which scenarios?

Usability and Accessibility How easy was it to interact with the agent?
How clear and understandable were the agent’s responses?

Relevance and Accuracy How relevant were the answers to your questions?
How accurate were the answers provided by the agent?
How relevant were the questions recommended by the agent?

Engagement and Curiosity Did the recommended questions motivate you to explore more?
How engaging did you find the conversation with the agent?

Personal Information How old are you?
How would you rate your knowledge on medical topics?
How would you rate your knowledge on technical topics?

Table A.1.: Survey Questions

63

List of Figures

2.1. Hierarchy of different definitions related to conversational agents, based on [4] 5
2.2. General design of a voice-based conversational agent, based on [4] 6

4.1. Overview of different steps performed to answer each research question . . . 19
4.2. Pipeline for automatic generation of QA pairs 21

5.1. Schematic representation of CHiQA, based on [25] 26
5.2. Flowchart showing conversation steps with conversational agent 37
5.3. Pipeline to answer a question with traditional IR 40
5.4. Taxonomy for mental illnesses used by recommendation component 43
5.5. Example for a question being randomly selected from the collection of QA

pairs (1), reformulated by ChatGPT (2) and incorrectly matched to another
question from the collection (3) . 51

A.1. Taxonomy for cardiovascular diseases used by recommendation component . 62

64

List of Tables

5.1. Dialogflow agent intents and their corresponding user inputs and agent re-
sponses . 46

5.2. Automatic performance evaluation of the conversational agent: Distribution
and frequency of match types based on similarity score for a random sample
of 200 questions . 50

A.1. Survey Questions . 63

65

Acronyms

API application programming interface. 21, 24, 29, 37, 47

CA conversational agent. 1–4, 6, 7, 15, 17–20, 24, 25, 27, 30, 36, 38, 52, 53, 55, 56, 60, 61

CHiQA Consumer Health Information and Question Answering. 16, 25–27, 64

CHQ consumer health question. 1–3, 8, 17, 18, 60, 61

DM dialogue manager. 4, 5

ELECTRA Efficiently Learning an Encoder that Classifies Token Replacements Accurately.
9, 13, 41

GUI graphifcal user interface. 7

IDF inverse document frequency. 13

IR information retrieval. 10, 12, 14–16, 18, 22, 25, 36, 38, 40–42, 44–46, 54, 58, 60, 61, 64

JSON JavaScript Object Notation. 29–31, 33

LLM large language model. 2, 7, 18–24, 27, 28, 36, 53, 56, 61

NLG natural language generator. 4, 5

NLU natural language understanding. 4, 5, 7

PoTS postural tachycardia syndrome. 27, 34, 35, 42, 52

QA question-answering. 1–3, 7–10, 12–25, 27–46, 48–51, 53, 54, 56–58, 60, 61, 64

RQE recognizing question entailment. 16, 25

TREC Text REtrieval Conference. 16–18, 26, 27, 61

66

Bibliography

[1] A. Welivita and P. Pu. “A survey of consumer health question answering systems”.
In: AI Magazine 44.4 (2023), pp. 482–507. DOI: https://doi.org/10.1002/aaai.
12140. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/aaai.12140.

[2] P. Zweigenbaum. “Question answering in biomedicine”. In: Proceedings Workshop
on Natural Language Processing for Question Answering 2005 (2005), pp. 1–4.

[3] V. Nguyen. “Question Answering in the Biomedical Domain”. In: Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics: Student
Research Workshop. Ed. by F. Alva-Manchego, E. Choi, and D. Khashabi. Florence,
Italy: Association for Computational Linguistics, 2019, pp. 54–63. DOI: 10.18653/
v1/P19-2008. URL: https://aclanthology.org/P19-2008.

[4] M. Allouch, A. Azaria, and R. Azoulay. “Conversational Agents: Goals, Technologies,
Vision and Challenges”. In: Sensors 21.24 (2021). ISSN: 1424-8220. DOI: 10.3390/
s21248448. URL: https://www.mdpi.com/1424-8220/21/24/8448.

[5] B. Bui Huu Trung. Multimodal Dialogue Management - State of the art. Undefined.
CTIT Technical Report Series 06-01. Imported from CTIT. Netherlands: Centre for
Telematics and Information Technology (CTIT), Jan. 2006.

[6] H. Weld, X. Huang, S. Long, J. Poon, and S. C. Han. “A Survey of Joint Intent
Detection and Slot Filling Models in Natural Language Understanding”. In: ACM
Comput. Surv. 55.8 (Dec. 2022). ISSN: 0360-0300. DOI: 10.1145/3547138. URL:
https://doi.org/10.1145/3547138.

[7] I. Dagkoulis and L. Moussiades. “A Comparative Evaluation of Chatbot Development
Platforms”. In: Proceedings of the 26th Pan-Hellenic Conference on Informatics. PCI
’22. , Athens, Greece, Association for Computing Machinery, 2023, pp. 322–328.
ISBN: 9781450398541. DOI: 10.1145/3575879.3576012. URL: https://doi.org/
10.1145/3575879.3576012.

[8] J. L. Z. Montenegro, C. A. da Costa, and R. da Rosa Righi. “Survey of conversational
agents in health”. In: Expert Systems with Applications 129 (2019), pp. 56–67.
ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.eswa.2019.03.054. URL:
https://www.sciencedirect.com/science/article/pii/S0957417419302283.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. “Attention is All you Need”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017.

67

https://doi.org/https://doi.org/10.1002/aaai.12140
https://doi.org/https://doi.org/10.1002/aaai.12140
https://onlinelibrary.wiley.com/doi/abs/10.1002/aaai.12140
https://doi.org/10.18653/v1/P19-2008
https://doi.org/10.18653/v1/P19-2008
https://aclanthology.org/P19-2008
https://doi.org/10.3390/s21248448
https://doi.org/10.3390/s21248448
https://www.mdpi.com/1424-8220/21/24/8448
https://doi.org/10.1145/3547138
https://doi.org/10.1145/3547138
https://doi.org/10.1145/3575879.3576012
https://doi.org/10.1145/3575879.3576012
https://doi.org/10.1145/3575879.3576012
https://doi.org/https://doi.org/10.1016/j.eswa.2019.03.054
https://www.sciencedirect.com/science/article/pii/S0957417419302283

Bibliography

URL: https : / / proceedings . neurips . cc / paper _ files / paper / 2017 / file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[10] H. Face. The Hugging Face Course, 2022. https : / / huggingface . co / course.
[Online; accessed 02.02.2024]. 2022.

[11] K. Ethayarajh. “How Contextual are Contextualized Word Representations? Compar-
ing the Geometry of BERT, ELMo, and GPT-2 Embeddings”. In: CoRR abs/1909.00512
(2019). arXiv: 1909.00512. URL: http://arxiv.org/abs/1909.00512.

[12] K. Clark, M. Luong, Q. V. Le, and C. D. Manning. “ELECTRA: Pre-training Text
Encoders as Discriminators Rather Than Generators”. In: CoRR abs/2003.10555
(2020). arXiv: 2003.10555. URL: https://arxiv.org/abs/2003.10555.

[13] Y. Bengio, R. Ducharme, and P. Vincent. “A Neural Probabilistic Language Model”. In:
Advances in Neural Information Processing Systems. Ed. by T. Leen, T. Dietterich, and
V. Tresp. Vol. 13. MIT Press, 2000. URL: https://proceedings.neurips.cc/paper_

files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf.

[14] J. Gómez and P.-P. Vázquez. “An Empirical Evaluation of Document Embeddings
and Similarity Metrics for Scientific Articles”. In: Applied Sciences 12.11 (2022).
ISSN: 2076-3417. DOI: 10.3390/app12115664. URL: https://www.mdpi.com/2076-
3417/12/11/5664.

[15] A. Singhal. “Modern Information Retrieval: A Brief Overview”. In: IEEE Data Eng.
Bull. 24 (2001), pp. 35–43.

[16] T. Vrbanec and A. Meštrović. “Comparison study of unsupervised paraphrase de-
tection: Deep learning—The key for semantic similarity detection”. In: Expert Sys-
tems 40.9 (2023), e13386. DOI: https://doi.org/10.1111/exsy.13386. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/exsy.13386. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/exsy.13386.

[17] V. U. Thompson, C. Panchev, and M. Oakes. “Performance evaluation of similar-
ity measures on similar and dissimilar text retrieval”. In: 2015 7th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management (IC3K). Vol. 01. 2015, pp. 577–584.

[18] S. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford. “Okapi
at TREC-3”. In: Jan. 1994, pp. 109–126.

[19] R. Seitz. In: (Mar. 2020). URL: https://kmwllc.com/index.php/2020/03/20/
understanding-tf-idf-and-bm-25/.

[20] G. Amati. “BM25”. In: Encyclopedia of Database Systems. Ed. by L. LIU and M. T.
ÖZSU. Boston, MA: Springer US, 2009, pp. 257–260. ISBN: 978-0-387-39940-9. DOI:
10.1007/978-0-387-39940-9_921. URL: https://doi.org/10.1007/978-0-387-
39940-9_921.

68

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://huggingface.co/course
https://arxiv.org/abs/1909.00512
http://arxiv.org/abs/1909.00512
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://doi.org/10.3390/app12115664
https://www.mdpi.com/2076-3417/12/11/5664
https://www.mdpi.com/2076-3417/12/11/5664
https://doi.org/https://doi.org/10.1111/exsy.13386
https://onlinelibrary.wiley.com/doi/pdf/10.1111/exsy.13386
https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.13386
https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.13386
https://kmwllc.com/index.php/2020/03/20/understanding-tf-idf-and-bm-25/
https://kmwllc.com/index.php/2020/03/20/understanding-tf-idf-and-bm-25/
https://doi.org/10.1007/978-0-387-39940-9_921
https://doi.org/10.1007/978-0-387-39940-9_921
https://doi.org/10.1007/978-0-387-39940-9_921

Bibliography

[21] M. A. Calijorne Soares and F. S. Parreiras. “A literature review on question answering
techniques, paradigms and systems”. In: Journal of King Saud University - Computer
and Information Sciences 32.6 (2020), pp. 635–646. ISSN: 1319-1578. DOI: https:
//doi.org/10.1016/j.jksuci.2018.08.005. URL: https://www.sciencedirect.
com/science/article/pii/S131915781830082X.

[22] D. Wang and E. Nyberg. “CMU OAQA at TREC 2017 LiveQA: A Neural Dual En-
tailment Approach for Question Paraphrase Identification”. In: Proceedings of The
Twenty-Sixth Text REtrieval Conference (TREC) (2017). URL: https://trec.nist.
gov/pubs/trec26/papers/CMU-OAQA-QA.pdf.

[23] Y. Yang, J. Yu, Y. Hu, X. Xu, and E. Nyberg. “CMU LiveMedQA at TREC 2017 LiveQA:
A Consumer Health Question Answering System”. In: CoRR abs/1711.05789 (2017).
URL: http://arxiv.org/abs/1711.05789.

[24] A. B. Abacha and D. Demner-Fushman. “A Question-Entailment Approach to Question
Answering”. In: CoRR abs/1901.08079 (2019). arXiv: 1901.08079. URL: http://
arxiv.org/abs/1901.08079.

[25] D. Demner-Fushman, Y. Mrabet, and A. Ben Abacha. “Consumer health information
and question answering: helping consumers find answers to their health-related
information needs”. In: Journal of the American Medical Informatics Association 27.2
(Oct. 2019), pp. 194–201. ISSN: 1527-974X. DOI: 10.1093/jamia/ocz152. eprint:
https://academic.oup.com/jamia/article-pdf/27/2/194/34152452/ocz152.
pdf. URL: https://doi.org/10.1093/jamia/ocz152.

[26] W. Wong, J. Thangarajah, and L. Padgham. “Contextual question answering for the
health domain”. In: Journal of the American Society for Information Science and
Technology 63.11 (2012), pp. 2313–2327. DOI: https://doi.org/10.1002/asi.
22733. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.22733.

[27] Y. P. Asma Ben Abacha Eugene Agichtein and D. Demner-Fushman. “Overview of
the Medical Question Answering Task at Trec 2017 Liveqa”. In: Proceedings of The
Twenty-Sixth Text REtrieval Conference (TREC) (2017). URL: https://trec.nist.
gov/pubs/trec26/papers/Overview-QA.pdf.

[28] A. B. Abacha and D. Demner-Fushman. “A question-entailment approach to question
answering”. In: BMC Bioinformatics 20.511 (2019). URL: https://doi.org/10.
1186/s12859-019-3119-4.

[29] M.-D. Olvera-Lobo and J. Gutiérrez-Artacho. “Open- vs. Restricted-Domain QA Sys-
tems in the Biomedical Field”. In: Journal of Information Science 37.2 (2011),
pp. 152–162. DOI: 10.1177/0165551511398575. eprint: https://doi.org/10.
1177/0165551511398575. URL: https://doi.org/10.1177/0165551511398575.

[30] Z. Gu, Q. Wang, F. Li, and Y. Ou. “Design of Intelligent QA for Self-learning of
College Students Based on BERT”. In: ISCTT 2021; 6th International Conference on
Information Science, Computer Technology and Transportation. 2021, pp. 1–5.

69

https://doi.org/https://doi.org/10.1016/j.jksuci.2018.08.005
https://doi.org/https://doi.org/10.1016/j.jksuci.2018.08.005
https://www.sciencedirect.com/science/article/pii/S131915781830082X
https://www.sciencedirect.com/science/article/pii/S131915781830082X
https://trec.nist.gov/pubs/trec26/papers/CMU-OAQA-QA.pdf
https://trec.nist.gov/pubs/trec26/papers/CMU-OAQA-QA.pdf
http://arxiv.org/abs/1711.05789
https://arxiv.org/abs/1901.08079
http://arxiv.org/abs/1901.08079
http://arxiv.org/abs/1901.08079
https://doi.org/10.1093/jamia/ocz152
https://academic.oup.com/jamia/article-pdf/27/2/194/34152452/ocz152.pdf
https://academic.oup.com/jamia/article-pdf/27/2/194/34152452/ocz152.pdf
https://doi.org/10.1093/jamia/ocz152
https://doi.org/https://doi.org/10.1002/asi.22733
https://doi.org/https://doi.org/10.1002/asi.22733
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.22733
https://trec.nist.gov/pubs/trec26/papers/Overview-QA.pdf
https://trec.nist.gov/pubs/trec26/papers/Overview-QA.pdf
https://doi.org/10.1186/s12859-019-3119-4
https://doi.org/10.1186/s12859-019-3119-4
https://doi.org/10.1177/0165551511398575
https://doi.org/10.1177/0165551511398575
https://doi.org/10.1177/0165551511398575
https://doi.org/10.1177/0165551511398575

Bibliography

[31] A. Lamurias, D. Sousa, and F. M. Couto. “Generating Biomedical Question Answering
Corpora From Q&A Forums”. In: IEEE Access 8 (2020), pp. 161042–161051. DOI:
10.1109/ACCESS.2020.3020868.

[32] D. Kalpakchi and J. Boye. “Quasi: a synthetic Question-Answering dataset in Swedish
using GPT-3 and zero-shot learning”. In: Proceedings of the 24th Nordic Conference
on Computational Linguistics (NoDaLiDa). Ed. by T. Alumäe and M. Fishel. Tórshavn,
Faroe Islands: University of Tartu Library, May 2023, pp. 477–491. URL: https:
//aclanthology.org/2023.nodalida-1.48.

[33] V. Samuel, H. Aynaou, A. G. Chowdhury, K. V. Ramanan, and A. Chadha. Can LLMs
Augment Low-Resource Reading Comprehension Datasets? Opportunities and Chal-
lenges. 2023. arXiv: 2309.12426 [cs.CL].

[34] E. Mutabazi, J. Ni, G. Tang, and W. Cao. “A Review on Medical Textual Question
Answering Systems Based on Deep Learning Approaches”. In: Applied Sciences
11.12 (2021). ISSN: 2076-3417. DOI: 10.3390/app11125456. URL: https://www.
mdpi.com/2076-3417/11/12/5456.

[35] A. Chuklin, A. Schuth, K. Zhou, and M. D. Rijke. “A Comparative Analysis of Interleav-
ing Methods for Aggregated Search”. In: ACM Trans. Inf. Syst. 33.2 (Feb. 2015). ISSN:
1046-8188. DOI: 10.1145/2668120. URL: https://doi.org/10.1145/2668120.

[36] A. Deardorff, K. Masterton, K. Roberts, H. Kilicoglu, and D. Demner-Fushman. “A
protocol-driven approach to automatically finding authoritative answers to consumer
health questions in online resources”. In: Journal of the Association for Information
Science and Technology 68.7 (2017), pp. 1724–1736. DOI: https://doi.org/10.
1002/asi.23806. eprint: https://asistdl.onlinelibrary.wiley.com/doi/pdf/
10.1002/asi.23806. URL: https://asistdl.onlinelibrary.wiley.com/doi/
abs/10.1002/asi.23806.

[37] OpenAI API Reference: Chat Create. Accessed: 2024-02-09. URL: https://platform.
openai.com/docs/api-reference/chat/create.

[38] B. Meskó. “Prompt Engineering as an Important Emerging Skill for Medical Profes-
sionals: Tutorial”. In: J Med Internet Res 25 (Oct. 2023), e50638. ISSN: 1438-8871.
DOI: 10.2196/50638. URL: http://www.ncbi.nlm.nih.gov/pubmed/37792434.

[39] A. Trotman, A. Puurula, and B. Burgess. “Improvements to BM25 and Language
Models Examined”. In: ADCS ’14. Melbourne, VIC, Australia: Association for Com-
puting Machinery, 2014, pp. 58–65. ISBN: 9781450330008. DOI: 10.1145/2682862.
2682863. URL: https://doi.org/10.1145/2682862.2682863.

70

https://doi.org/10.1109/ACCESS.2020.3020868
https://aclanthology.org/2023.nodalida-1.48
https://aclanthology.org/2023.nodalida-1.48
https://arxiv.org/abs/2309.12426
https://doi.org/10.3390/app11125456
https://www.mdpi.com/2076-3417/11/12/5456
https://www.mdpi.com/2076-3417/11/12/5456
https://doi.org/10.1145/2668120
https://doi.org/10.1145/2668120
https://doi.org/https://doi.org/10.1002/asi.23806
https://doi.org/https://doi.org/10.1002/asi.23806
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.23806
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.23806
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.23806
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.23806
https://platform.openai.com/docs/api-reference/chat/create
https://platform.openai.com/docs/api-reference/chat/create
https://doi.org/10.2196/50638
http://www.ncbi.nlm.nih.gov/pubmed/37792434
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/2682862.2682863

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Research
	Thesis Outline

	Foundations and Theoretical Background
	Conversational Agents
	Fundamentals and Definitions
	Development of a Conversational Agent
	Conversational Agents in Healthcare

	Pre-Trained Language Models
	Auto-Encoding Transformers
	Auto-Regressive Transformers

	Question-Answering
	Similarity Search
	Information Retrieval
	Similarity Search vs Information Retrieval

	Related Work
	Conversational Agents in Consumer Health Domain
	Existing Question-Answering Approaches
	Evaluation

	Generation of Question-Answering Pairs
	Novelty of Our Approach

	Methods
	Literature Review
	Generation of Question-Answering Pairs
	Development of a Conversational Agent
	Evaluation

	Results
	RQ1: Literature Review
	Generation of Question-Answering Pairs
	Existing Conversational Agents for Answering Consumer Health Questions

	RQ2: Construction of Question-Answering Dataset
	Extraction of Data
	Generation of Question-Answering Pairs
	Further Processing
	Validation

	RQ3: Development of a Conversational Agent
	Architecture of a Conversational Agent
	Question Analysis Component
	Recommendation Component
	Dialogflow

	RQ4: Evaluation of CA
	Automatic Evaluation
	Test User Evaluation

	Discussion
	Key Findings
	Challenges

	Conclusion
	Summary
	Future Work

	Appendix
	List of Figures
	List of Tables
	Acronyms
	Bibliography

